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of the “chiral density wave” instability of the quark Fermi surface in large Nc QCD at
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1. Introduction and summary

QCD at finite temperature and chemical potential. The phase diagram of QCD

as a function of temperature and baryon chemical potential (or alternatively baryon den-

sity) displays a rich variety of phases and transitions (for reviews, see [1 – 3]). However,

apart from the regimes of asymptotically large temperature or chemical potential, where

some analytic calculations are possible, and of zero chemical potential, where reliable lat-

tice simulations are possible, our knowledge of the phase diagram is based exclusively on

extrapolations and semi-empirical toy models. For intermediate values of the chemical po-

tential, numerical simulation is plagued by a notorious ‘sign problem’ (see for example [3]),

while analytic calculations are not possible due to strong coupling. Thus, while there has
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been significant progress recently in understanding the qualitative features of the phase di-

agram, reliable quantitative calculations that would definitively verify the proposed phase

structure or determine the locations of various transitions or properties of the various

phases seem a formidable challenge at present. A better understanding of the details of

the phase diagram at intermediate chemical potential would have valuable applications, for

example in understanding the physics of neutron-star interiors.

Holographic models of QCD. With the advent of the gauge theory / gravity dual-

ity [5], we have a new tool for studying the properties of certain strongly coupled gauge

theories. While the original and most studied examples involve highly supersymmetric

conformal gauge theories without fundamental matter, much progress has been made in

constructing examples without supersymmetry [6], with confinement [6], with fundamental

matter [7] and with chiral symmetry breaking [8]. We now have examples of gauge theories

with a known gravity dual that share most of the qualitative features of QCD, and the

duality permits analytic calculations that would be otherwise impossible.

It is obviously interesting to study these QCD-like theories in regimes for which neither

analytic or numerical studies are currently possible in real QCD. One such regime is the

near-equilibrium behavior of the theory at finite temperature . This has received a great

deal of attention recently (see [4] for a review) since calculations in holographic1 models

of QCD-like theories do a better job of explaining and predicting some properties of the

quark-gluon plasmas produced in relativistic heavy-ion collisions than any other approach.

In the present paper, our focus will be on another such regime as described above, the

equilibrium properties at finite baryon chemical potential.

There is already a large literature on studies of gauge theories at finite chemical poten-

tial using gravity duals (see [9] and references therein). Many of these consider a chemical

potential for R-charge in theories with only adjoint matter. There have been some some

studies of the behavior of theories with fundamental matter at finite baryon chemical po-

tential, but the early examples of holographic theories with fundamental matter had both

bosonic and fermionic fields carrying baryon charge. In these cases, the physics at finite

chemical potential involves Bose condensation rather than the formation of a Fermi surface.

In order to get behavior similar to real QCD, it is essential to study a theory with baryon

charge carried exclusively by fermionic fields. Such a model was constructed a few years

ago by Sakai and Sugimoto [10], and it is this model that we will focus on the present work.

The Sakai-Sugimoto model. The details of the Sakai-Sugimoto model are reviewed

in section 2. Briefly, the model gives a holographic construction of a non-supersymmetric

SU(Nc) gauge theory with Nf fundamental fermions. The gravity dual involves Nf D8-

branes in the near-horizon geometry of Nc D4-branes wrapped on a spatial circle with

anti-period boundary conditions for the fermions. In the geometry, the compact direction

of the field theory together with the radial direction form a cigar-type geometry, in which

the D8-branes are embedded as shown in figure 1. The other directions include an S4

1Here ’holographic’ is a now conventional term referring to the equivalence between a higher-dimensional

gravitational theory and a lower-dimensional field theory.
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Figure 1: Type IIA string theory configuration for the Sakai-Sugimoto model.

carrying Nc units of D4-brane flux and the 3 + 1 directions of the field theory. In addition

to Nf and Nc, the theory has a dimensionless parameter λ, the ’t Hooft coupling at the

field theory Kaluza-Klein scale.2

For small values of λ, the scale ΛQCD where the running coupling becomes large is well

below the field theory Kaluza-Klein scale, and the low-energy physics should be precisely

that of pure SU(N) Yang-Mills theory coupled to Nf massless (fermionic) quarks.3 Un-

fortunately, in this limit, the dual gravity background is highly curved so we are not in

a position to study it. For large λ on the other hand, the gravity background is weakly

curved, and so via classical calculations on the gravity side of the correspondence, it should

be possible to map out the phase diagram of the field theory as a function of temperature

and chemical potential and quantitatively determine properties of the various phases.

We do not expect our results to agree quantitatively with real QCD (both because the

Kaluza-Klein scale is not well separated from ΛQCD for large λ and because the classical

calculations give only the leading terms in the 1/N expansion), but it would certainly be

interesting to have a precise understanding of the phase diagram for a theory that is so

similar to QCD. Indeed, at least some features of the phase structure and the qualitative

behavior of certain transitions are likely to be the same as in QCD, and we might even

hope for rough quantitative agreement for quantities that are relatively insensitive to λ

and Nc (we will discuss one such quantity below).

The transition to nuclear matter. Our focus in this paper will be on the part of

the phase diagram for zero temperature and intermediate values of the baryon chemical

potential. In real QCD, as we increase the chemical potential from zero, the equilibrium

state (i.e. the ground state) continues to be the vacuum until some critical value of the

chemical potential at which point it becomes advantageous for baryons to condense. A first

approximation to this critical value is the baryon mass, since it is at this point where it

becomes energetically favorable to add single baryons to the vacuum. In fact, the critical

2The model has another parameter, corresponding to the asymptotic separation between the D8-branes,

but we focus exclusively on the case where the two stacks are on opposite sides of circle and extend down

to the tip of the cigar.
3For recent work on adding quark masses, see [11, 12].

– 3 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
3

value is somewhat lower, since the baryons have a negative binding energy. At the critical

value, we have a first order transition from the vacuum state to homogeneous nuclear matter

with some minimal baryon density.4 The best estimate for the critical chemical potential

comes by studying the masses of atomic nuclei as a function of nucleon numbers [15]. These

are fit very well by the Weizsacker-Bethe semiempirical mass formula, which includes a term

proportional to the number of nucleons,

mvol = −bvolA

to take into account the energy −bvol due to strong interactions of each nucleon in the

interior of a nucleus with its neighbors plus the average kinetic energy per nucleon (non-

zero due to Fermi-Dirac statistics). The best fit for this energy is

bvol = 16 MeV . (1.1)

Ignoring electromagnetic interactions, this gives the binding energy per nucleon in the limit

of large nuclei, and thus should be a good approximation to the value for homogeneous

nuclear matter just beyond the transition. Thus, the critical chemical potential for the

transition to nuclear matter in QCD should be approximately

µc = MB

(

1 − bvol

MB

)

≈MB(1 − 0.017) .

As we increase the chemical potential further, the baryon density and the energy per baryon

will increase from their values just above the transition. Eventually we hit at least one

more transition, to a phase characterized by quark-quark condensates [1].

In this paper, we will study the physics of the transition to nuclear matter in the Sakai-

Sugimoto model at large λ. Via classical calculations in the dual gravitational theory, we

will be able to determine the critical chemical potential and calculate the baryon density

nB(µ) and the energy per baryon eB(µ) for µ above the transition.

Expectations at large N . Since our gravity calculations will give results corresponding

to the large Nc limit of the field theory (with a fixed Nf ), we should briefly recall the

expectations for how baryons behave for large Nc [13]. In this limit, baryon masses and

baryon-baryon interaction energies go as Nc, but the baryon size approaches a constant.

Thus, we expect that both the baryon density above the transition and the binding energy

per nucleon divided by the baryon mass to have a finite limit for large Nc. These properties

indeed follow from our calculations.

One significant difference between the large Nc theory and ordinary QCD is the ex-

pected behavior at asymptotically large values of the chemical potential. In both cases,

we have attractive interactions between excitations on the Fermi surface that result in an

instability, but the nature of the resulting condensates is different. Whereas for Nc = 3

4It is important to note that we are talking only about QCD and ignoring electromagnetism here.

With electromagnetic interactions, the binding energy per nucleon is actually greater in iron nuclei than in

homogeneous nuclear matter, so the transition to nuclear matter is preceded by a transition to solid iron.
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the instability is a BCS-type instability, believed to lead to a color superconductor phase,

the dominant instability at large Nc is toward the formation of “chiral density waves” [18],

inhomogeneous perturbations in the chiral condensate with wave number of order twice the

chemical potential. This suggests that the ground state for large Nc QCD at large enough

chemical potential is inhomogeneous, however the nature of the true ground state remains

mysterious (see [19] for a recent discussion). We believe that our analysis sheds some light

on this question, as we will discuss shortly.

Results for the Sakai-Sugimoto model. In the Sakai-Sugimoto model, a chemical

potential for baryon number corresponds to a nonzero asymptotic value of the electrostatic

potential on the D8-branes, equal on both asymptotic regions of the D8-brane. Generally,

this potential behaves asymptotically (for radial coordinate U to be described below) as

A0 ∼ µB + E
c

U3/2
+ . . . .

The baryon density nB is proportional to the asymptotic abelian electric flux E, so configu-

rations with non-zero baryon density in the field theory correspond to D8-brane configura-

tions with sources for the electric flux. These sources can be either string endpoints on the

D8-branes which originate from D4-branes wrapped on the internal S4 of the geometry [14]

or (for Nf > 1) configurations of the Yang-Mills field carrying instanton charge [16, 17].

The latter can be thought of as the wrapped D4-branes dissolved into the D8-branes and

expanding into smooth instanton configurations.

One flavor. For any value of chemical potential, we always have a trivial solution for

which the electrostatic potential is constant on the D8-branes and the baryon density is

zero. However we can also consider translation invariant configurations with a uniform

baryon density. In the single flavor case, which we consider first, the bulk description of

baryons is in terms of pointlike instantons, since there are no large instanton configurations

in the abelian gauge theory of a single D8-brane. In this case, configurations with a uniform

baryon density correspond to having some density of these pointlike instantons on the D8-

brane. For a given value of the chemical potential greater than the critical value, we find

some preferred distribution of charges on the D8-brane. The total baryon density for a given

value of µ may be read off from the asymptotic value of the electric flux, and the result

increases smoothly from 0 above the critical chemical potential, approaching an asymptotic

behavior nB ∝ µ
5

2 . The charge distribution in the radial direction for a given value of µ

represents the distribution of energies in the condensate of baryons in the field theory.

In particular, the distribution has a sharp edge at some value of the radial coordinate

which increases for increasing chemical potential, and this gives a bulk manifestation of

the (quark) Fermi surface in the field theory.

For the single flavor case, the transition to nuclear matter is continuous, unlike QCD,

but it may be expected that the single flavor case is different due to the absence of pions

which usually play a crucial role in interactions between nucleons.

Two flavors. In the case with Nf > 1, we can have nonsingular instantons on the

Nf coincident D8-branes, and the minimum energy configurations for large enough µ are
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should involve smooth configurations of the nonabelian gauge field carrying an instanton

density. While we might expect this to be homogeneous in the field theory directions,

we argue that there are no allowed configurations of the D8-brane gauge field that are

spatially homogeneous in the three field theory directions such that the net energy density

and baryon density in the field theory are both finite. Thus, any phase with finite baryon

density is necessarily spatially inhomogeneous. This has a simple interpretation: it suggests

that at large Nc, the nucleons retain their individual identities for any value of the chemical

potential. Assuming that this holds true also for small λ where the theory becomes 2 flavor

QCD, this suggests that the chiral density wave instability of the quark Fermi surface

in large Nc QCD simply indicates that the quarks want to bind into nucleons even at

asymptotically large densities. This is discussed further in section 5.

To avoid the complication of directly studying inhomogeneous configuration, we ap-

proximate these by certain singular homogeneous configurations, arguing that our approx-

imation should become exact in the limit of large densities. Within the context of this

approximation, we study the behavior of the system as a function of chemical potential.

Our model displays a first order transition to nuclear matter at some critical chemical

potential that depends on the parameter λ, with the baryon density behaving as nB ∝ µ3

for large µ. In the limit of large λ, the critical value approaches the baryon mass, so the

binding energy per nucleon is a vanishing fraction of the baryon mass at large λ.5

For large but finite λ, we find the behavior

µc = M0
B

(

1 +
c

λ
+ O

(

1

λ
3

2

))

where M0
B is the large λ result for the baryon mass

M0
B =

1

27π
MKKλNc .

On the other hand, the baryon mass for large but finite λ is [16, 17]

MB = M0
B

(

1 +
c′

λ
+ O

(

1

λ
3

2

))

.

It is interesting that the result for the binding energy per nucleon at the threshold for

nuclear matter formation,

Ebind = MB − µc ≈
Nc

27π
MKK(c′ − c) ,

is actually insensitive to the value of λ for large λ. Since we also know that this binding

energy approaches some constant value in the limit of small λ (the large Nc QCD result

with two massless flavors), then assuming a smooth behavior at intermediate values of λ,

we can treat the large λ result as a prediction for the order of magnitude of the QCD

5While this statement is derived in the context of our approximation, we argue that it should be true in

the full model.
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result.6 Noting that MKK ≈ ΛQCD for large λ, the value of the binding energy per nucleon

extrapolated to Nc = 3 becomes

Ebind =
1

9π
ΛQCD(c′ − c) ≈ 7 MeV(c′ − c)

In order to reliably compute the the numerical coefficients c and c′, we require knowledge

of the nonabelian analogue of the Born-Infeld action, and (in the case of c′) probably

corrections to this involving derivatives of field strengths. However, assuming c′ − c is of

order one,7 we do obtain the same order of magnitude as the QCD result (1.1). We are not

aware of any other methods to reliably estimate this binding energy from first principles, so

it is possible that a more complete calculation in the Sakai-Sugimoto model would represent

the most reliable analytic prediction of this quantity.

Outline. The remainder of the paper is organized as follows. In section 2, we review the

Sakai-Sugimoto construction and collect various results necessary for our investigation. In

section 3, we review the description of baryons in the Sakai-Sugimoto model and outline

the basic approach for studying the theory at finite chemical potential. In section 4, we

consider the single flavor case, calculating the baryon density as a function of chemical

potential above the transition to nuclear matter. In section 5, we discuss the two flavor

case, introduce our approximation, and set up a variational problem that determines the

minimal energy configuration with a fixed baryon density (within our approximation). We

then study the variational problem numerically for various values of chemical potential

and baryon density to determine the critical chemical potential above which the minimum

energy configuration has non-zero baryon density.

Related work. Our work complements and extends various previous studies of the phase

diagram for the Sakai-Sugimoto model. The behavior at finite temperature was analyzed

in [22]. The behavior of the Sakai-Sugimoto model at finite chemical potential has also

been discussed (with a different focus from the present paper) in [23, 24, 26]. Discussions

of the finite density behavior in other holographic models of QCD include [9, 29, 28, 27, 34]

While this paper was in preparation, the paper [33] appeared, which has some overlap

with the present work, in particular section 4.1.

2. The Sakai-Sugimoto model

The basic setup for the Sakai-Sugimoto model [10] begins with the low-energy decoupling

limit of Nc D4-branes wrapped on a circle of length 2πR with anti-periodic boundary

conditions for the fermions [6]. Apart from Nc, this theory has a single dimensionless

parameter

λ =
λD4

2πR
,

6Another example with similar insensitivity to λ for both large and small λ is the free energy of N = 4

SUSY Yang-Mills theory. Here, it is indeed the case that the large λ result for the free energy gives a good

prediction of the order of magnitude of the the small λ result (or vice versa).
7We must also assume that our approximation scheme at least gets the right power of λ in the correction

to µc.
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the four-dimensional gauge coupling at the Kaluza-Klein scale. Because of the antiperiodic

boundary conditions, the adjoint fermions receive masses of order 1/R while the scalars get

masses of order λ/R due to one-loop effects. The coupling runs as we go to lower energies,

becoming strong at a scale

ΛQCD ∼ 1

R
e

−c
λ

for some numerical constant c. As pointed out by Witten [6], for small λ, the dynamical

scale ΛQCD is far below the scale of the fermion and scalar masses and the Kaluza-Klein

scale, so the dynamics should be exactly that of pure Yang-Mills theory.

The field theory here is dual to type IIA string theory on the near-horizon geometry

of the branes. The Lorentzian metric, dilaton, and four-form field strength are given by

ds2 =

(

U

R4

)
3

2

(ηµνdx
µdxν + f(U)dx2

4) +

(

R4

U

)
3

2

(

1

f(U)
dU2 + U2dΩ2

4

)

eφ = gs

(

U

R4

)
3

4

F4 =
2πNc

ω4

ǫ4

where ω4 is the volume of a unit 4-sphere, ǫ4 is the volume form on S4, and

f(U) = 1 −
(

U0

U

)3

.

The x4 direction, corresponding to the Kaluza-Klein direction in the field theory, is taken to

be periodic, with coordinate periodicity 2πR, however, it is important to note that this x4

circle is contractible in the bulk since the x4 and U directions form a cigar-type geometry.

The parameters R4 and U0 appearing in the supergravity solution are related to the

string theory parameters by

R3
4 = πgsNcl

3
s U0 =

4π

9R2
gsNcl

3
s

while the four-dimensional gauge coupling λ is related to the string theory parameters as

λ = 2π
gsNcls
R

.

In terms of the field theory parameters, the dilaton and string-frame curvature at the tip of

the cigar (the IR part of the geometry) are of order λ
3

2 /Nc and
√
λ, so as usual, supergravity

will be a reliable tool for studying the infrared physics when both λ and Nc are large (in

this case, with Nc ≫ λ
3

2 ).

Note that this is opposite to the regime of λ where we expect pure Yang-Mills theory

at low energies. However, we may still learn about pure Yang-Mills theory by studying

this regime, since many qualitative features of the theory remain the same and we might

expect further that certain quantitative features may be relatively insensitive to the value

of λ (as for example with the free energy in N = 4 SYM theory).
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2.1 Adding fundamental matter

Now that we have defined the adjoint sector of the theory, we would like to add fundamental

quarks. We keep the number of quark flavors fixed in the large Nc limit, but this means

that the number of degrees of freedom in the fundamental fields (including the gauge field)

is smaller than the number of degrees of freedom in the adjoint sector by a factor Nf/Nc.

Thus, for Nf fixed in the large Nc limit, the influence of the fundamental fields on the

dynamics of the adjoint fields should be negligible.8 In other words, what is known as

the “quenched approximation” in QCD literature is exact in this limit. This implies that

adding the additional matter does not modify the geometry, and indeed the construction of

Sakai and Sugimoto (following earlier constructions) involves adding branes to the geometry

which are treated in the probe approximation.

The Sakai-Sugimoto construction is motivated by the observation that the light open

string modes living at a 3+1 dimensional intersection of D4-branes and D8-branes give rise

to chiral fermion fields on the intersection without accompanying bosons. Thus, to the

original D4-branes, which we can take to lie in the 01234 directions with the x4 direction

periodic, Sakai and Sugimoto consider adding a stack of Nf D8-branes and a stack of Nf

anti-D8 branes separated at fixed locations in the x4 directions and extended along the

remaining directions. This configuration is unstable before taking a near horizon limit,9

nevertheless, one can obtain a stable configuration of the probe branes in the bulk geometry

by fixing the asymptotic positions of the D8 and D8-bar stacks in the x4 direction. The

x4 positions of the branes are free to vary as a function of the radial direction U in the

bulk of the geometry, and charge conservation implies that the two stacks necessarily join

up in the interior of the geometry. Thus, (in the zero-temperature situation that we are

considering) we really have just a single set of D8-branes, bent so that the orientation in

the two asymptotic regions is opposite (see figure 1).

The specific embedding of the D8-branes in the bulk depends on the asymptotic sepa-

ration of the stacks (and also any distribution of matter on the branes), but we will focus

exclusively on the case where the two asymptotic parts of the D8-brane stack sit at opposite

sides of the D8 circle, in which case each side simply extends to the tip of the cigar along

a line of constant x4 as shown in figure 1. The corresponding field theory has all flavors

massless.

2.2 D8-brane action

To understand the physics of the probe D8-branes, we will need the action for the world-

volume D8-brane fields in the background above. We will begin by discussing the action

for a single D8-brane before discussing the nonabelian generalization.

8It would be quite reasonable to argue that we should keep Nf/Nc fixed for large Nc to obtain a theory

that is most qualitatively similar to QCD, since then the number of degrees of freedom in the adjoint and

fundamental sectors of the theory remain of the same order of magnitude for large N . However, this limit

is much more difficult to study using supergravity, since then the back-reaction of the matter branes, to be

described presently, must be taken into account.
9This instability is actually absent in the case we consider the stacks sit at opposite sides of the circle
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The Born-Infeld action for the worldvolume D8-brane fields (in the case of a single

brane) is

S = −µ8

∫

d9σe−φ
√

−det(gab + F̃ab)

where

F̃ ≡ 2πα′F

We also have a Wess-Zumino term

S = µ8

∫

eF̃ ∧
∑

C .

Here, only the C3 term contributes. Noting that F 3 is the derivative of the five-dimensional

Chern-Simons form, ω5 and integrating by parts, we get

S = −µ8

∫

F4 ∧ ω5 .

After integrating over the sphere, this gives

S =
Nc

24π2

∫

ω5(A) (2.1)

where dω5 = F ∧ F ∧ F . For a single D8-brane, ω5 = A ∧ F ∧ F .

To simplify the Born-Infeld action, we can choose to identify the worldvolume and

spacetime coordinates in the sphere and the field theory directions, and parameterize the

profile of the brane in the U and x4 directions by U(σ) and X(σ) respectively (we will soon

focus on the solution where X(σ) is constant).

We will be interested only in time-independent configurations homogeneous and

isotropic in the spatial directions of the field theory (which we label by indices i, j, k).

The most general configurations we will consider will have non-zero Fσi, Fij , and F0σ, all

functions only of σ.

Integrating the determinant from the sphere directions over the sphere, we get a factor

8

3
π2R3

4U

while the remaining five-dimensional determinant is

−det(gµν + F̃µν) = −(G00gσσ + F̃ 2
0σ + g00F̃σi(g + F̃ )ijF̃σj) det(Gij + F̃ij)

with

gσσ = G44∂σX∂σX +Guu∂σU∂σU .

Note that we are usingGIJ here to refer to the spacetime metric and gab for the worldvolume

metric. The final result (in the Abelian case) is

SDBI = −µ8

gs

8

3
π2R3

4

∫

d4xdσU

{(

(

U

R4

)
3

2

gσσ − F̃ 2
0σ

)(

(

U

R4

)3

+
1

2
F̃ 2

ij

)

(2.2)

+

(

U

R4

)3

F̃ 2
σi + (

1

2
ǫijkF̃iσF̃jk)

2

}
1

2
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This action is manifestly invariant under reparametrizations of σ. The nonabelian gener-

alization of this action is known only up to F 6 terms. Up to order F 4, we symmetrize all

of the nonabelian field strengths in expanding the square root and take an overall trace.

However, this symmetrized trace prescription is known to fail beyond order F 4.

2.3 Chemical potential for baryon charge

We would like to study the theory at finite chemical potential for baryon charge or alter-

natively, the theory with a modified Hamiltonian density

H = H + µB

where B is the baryon charge density operator

B = BL +BR = ψ†
LψL + ψ†

RψR .

This is equivalent to adding a term −µB to the action since there are no time derivatives

in B. Turning on the operator B in the boundary gauge theory with real coefficient µ

should correspond to turning on some (real) non-normalizible mode in the gravity picture.

From the original brane setup, we know that the operators BL and BR couple to the time-

components of the D8 and D̄8 brane gauge fields respectively. We will see below that the

equations of motion for these fields require them to approach some constant values in the

UV part of the geometry. If we describe the probe branes as above with a single gauge

field for the whole configuration, then we have two such constant values,

A∞ = A0(σ = ∞)

and

A−∞ = A0(σ = −∞)

These two values give the chemical potentials for the operators BL and BR.10 Thus, to

work at finite chemical potential for baryon number, we require that the value of A0 in

both asymptotic regions of the D8-brane approaches the constant µB.

2.4 Asymptotic solutions

In the simple case where the D8-brane is at constant x4 and we assume that only the

electrostatic potential is turned on, the Born-Infeld action above reduces to

SDBI = −µ8

gs

8

3
π2R

3

2

4

∫

dσd4xU
5

2

[

1

f(U)
∂σU∂σU − ∂σÃ∂σÃ

]
1

2

(2.3)

The reparametrization invariance allows us to chose U(σ) to be whatever we like. For a

given choice of U , the equation of motion for A away from any sources (which we assume

are localized in the infrared part of the geometry) is

∂σ

(

µ8

gs

8

3
π2R

3

2

4 U
5

2

[

1

f(U)
∂σU∂σU − ∂σÃ∂σÃ

]− 1

2

∂σÃ

)

= 0 (2.4)

10We give an argument in appendix A to establish that BL and BR are turned on with the same sign if

A∞ and A−∞ have the same sign.
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The quantity in round brackets is analogous to the conserved electric flux. Integrating and

rearranging, and choosing σ = U (valid for either half of the brane), we get

∂uÃ =
E

√

f(U)(U5 + E2)
, (2.5)

where E is an integration constant proportional to the conserved flux. Solving this, we

find

Ã = Ã∞ −
∫ ∞

U
du

E
√

F (u)(u5 + E2)

= Ã∞ +
2

3

E

U
3

2

+ . . .

valid in the region outside the sources. The constant E is the normalizible mode of A0 in

the asymptotic solution, so the values of E for the two sides of the brane correspond to

the expectation values for BL and BR in the field theory.

In general, the sum of the Es for the two halves of the brane (times µ8

gs

8
3
π2R

3

2

4 (2πα′))

is equal to the total charge density on the brane,

µ8

gs

8

3
π2R

3

2

4 (2πα′)(E2 + E1) = q

If we fix A∞ = A−∞ as we have argued corresponds to a chemical potential for baryon

number, and we assume that the sources are symmetric under a reflection in the σ direction,

then for continuous A0 we must have E1 = E2, and

µ8

gs

8

3
π2R

3

2

4 (2πα′)E = q/2 (2.6)

Since the charge density in the bulk (divided by Nc) corresponds to the baryon density in

the field theory, we obtain

nB =
µ8

gsNc

16

3
π2R

3

2

4 (2πα′)E (2.7)

3. Baryons

We have seen that configurations with non-zero baryon charge density (as measured by the

asymptotic electric flux E) require sources for A0 on the D8-branes. The basic source for

A0 is the endpoint of a fundamental string. In order to have some net charge, we need

the number of string endpoints of one orientation to be unequal to the number of string

endpoints of the other orientation. So we need a source for fundamental strings in the

bulk. In our background, such a source is provided by D4-branes wrapped on S4 [14].

These necessarily have Nc string endpoints, since the background D4-brane flux gives rise

to Nc units of charge on the spherical D4-branes, so we need Nc units of the opposite

charge (coming from the string endpoints) to satisfy the Gauss law constraint. Thus, we

can get a density of charge on the D8-brane by having a density of D4-branes wrapped on

S4 in the bulk, with Nc strings stretching between each D4-brane and the D8-brane.
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In the case where we have Nf > 1 D8-branes, there is another possible picture of the

configurations with baryons [16, 17]. To see this, note that a D4-brane / D8-brane system

with four common worldvolume directions is T-dual to a D0-D4 system. In that case, it

is well known that the D0-branes can “dissolve” in the D4-branes, where they show up as

instanton configurations of the spatial non-abelian gauge field. Similarly, our baryon branes

can dissolve in the D8-branes (if we have Nf > 1) and show up as instantons. Indeed, the

Chern-Simons term (2.1) gives rise to a coupling

S =
Nc

8π2

∫

A0Tr(F ∧ F ) (3.1)

between the instanton charge density and the abelian part of the gauge field, showing that

instantons act as a source for the electrostatic potential on the branes.

The question of which of these two pictures is more appropriate is a dynamical one,

but it turns out that the dissolved instantons give rise to a lower energy configuration since

the electrostatic forces prefer the instanton density to be delocalized [16, 17].

3.1 Baryon mass

The baryon mass was estimated originally by Sakai and Sugimoto [10] as the energy of a

D4-brane wrapped on S4 and located at the tip of the cigar. Since we will also need to

know the potential energy for such branes, we briefly recall the calculation. Starting with

the Born-Infeld action for a D4-brane wrapping S4,

S = −µ4

∫

d5ξe−φ
√

−det(gab)

and integrating over the sphere, we get

SD4 = −µ4

gs

8

3
π2R3

4

∫

dtU(t) (3.2)

as the velocity independent term in the action (the negative of the potential energy). The

minimum energy occurs for U = U0, and this gives the baryon mass

M0
B =

µ4

gs

8

3
π2R3

4U0 =
1

27π

1

R
λNc

This agrees with the Yang-Mills action for a pointlike instanton configuration on the D8-

brane [16]. Both of these calculations ignore the energy from the electric flux sourced

either by the string endpoints coming from the wrapped D4-brane or by the instanton

density. To take this into account, the authors of [16] and [17] considered more general

smooth instanton configurations with varying scale factor, inserting these into the Yang-

Mills approximation to the D8-brane action. They found that the optimal size for the

instanton behaves as λ−
1

2 , and that the baryon mass is

MB = M0
B

(

1 +
c′

λ

)
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This method ignores the effects of the non-trivial geometry on the Yang-Mills configuration

and also does not include effects from the α′ corrections to the D8-brane effective action,

which should be important, since for large λ, the instanton is small so that derivatives

of the Yang-Mills field strength are large. Thus, as the authors point out, the numerical

coefficient c′ should probably not be trusted. On the other hand, an analysis of the effects

of Born-Infeld corrections [16] indicates that at least the power of λ in the correction to

the mass and in the instanton size should be reliable.

3.2 Critical chemical potential

We have seen that turning on a chemical potential in the gauge theory corresponds to

including boundary conditions A0 = µ for the two asymptotic regions of the D8-brane.

For any µ, one solution consistent with these boundary conditions is to have constant A0

everywhere on the brane. This represents the vacuum configuration in the field theory.

However, beyond a certain critical chemical potential, this solution is unstable to the

condensation of baryons.

The critical value of the chemical potential should not be larger than the baryon mass.

At this value, a zero-momentum baryon has effectively negative energy in the modified

hamiltonian, so it is advantageous to add baryons to the vacuum. If there were no inter-

actions between the baryons, the critical chemical potential would be exactly the baryon

mass. Note that even in the absence of interactions, the baryon density above the transition

is limited by the Fermi statistics for the baryons for odd N or in any case by the Fermi

statistics of the quarks. The condensate will have occupied all states whose Fermi energy

is less than the chemical potential. In this case, the baryon density will rise smoothly from

zero above the critical chemical potential and the transition will be second order.

With short range repulsive interactions, the story would be qualitatively similar, with

a slower growth in the baryon density as the chemical potential is increased. In QCD,

however, we have attractive interactions, and this lowers the critical chemical potential

below the baryon mass. With the repulsive interactions, there is a specific nonzero value

of the baryon density for which the energy per baryon is lowest, and when the chemical

potential is increased to this value the baryon density jumps from zero to this density.

In the next sections, we will study this transition to nuclear matter in the Sakai-

Sugimoto model for one flavor (section 4) and two flavors (section 5). In the first case, it

appears that the transition is second order, unlike QCD, while in the multi-flavor case, we

find some evidence for a more realistic first-order transition.

4. One flavor physics

In this section, we study the physics of the Sakai-Sugimoto model at finite chemical poten-

tial in the simpler case of a single quark flavor. Here, we have only a single D8-brane in

the bulk, and we can use the abelian Born-Infeld action for our analysis. Since the abelian

gauge theory does not support large instantons, the wrapped D4-branes cannot dissolve

into the D8-branes, so the baryons are pointlike charges on the D8-brane that source the

electrostatic potential. For chemical potential larger than the baryon mass, it is favorable
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for some of these baryons to condense, and we would now like to determine the baryon

density as a function of chemical potential for µ above the critical value.

Once we have some non-zero baryon density, it is important to include the energy

contributions from the electric field on the branes. Starting with the action (2.3), we can

derive the 3+1 dimensional energy density via a Legendre transformation (or alternatively,

using the Noether method). We find11

Eflux =
µ8

gs

8

3
π2R

3

2

4

∫

dU
U

5

2

√

f
(

1 − f(U)(∂U Ã)2
)

. (4.1)

We can rewrite this in terms of the electric flux (2.5)

Eflux =
µ8

gs

8

3
π2R

3

2

4

∫

dU
U

5

2√
f

(

√

1 +
E2

U5
− 1

)

where we have subtracted off the E = 0 contribution from the brane tension.

4.1 Localized source approximation

As a first approximation, we make the simplifying assumption that all the pointlike in-

stantons sit at U = U0. More realistically, the charge should spread out dynamically, via

electrostatic repulsion; we will include this effect in section 4.2.

In our simple approximation, the energy from the electric flux (including a factor of 2

to take into account the energy from both halves of the D8-brane) is

Eflux = 2 · µ8

gs

8

3
π2R

3

2

4

∫ ∞

U0

dU
U

5

2√
f

(

√

1 +
E2

U5
− 1

)

=
µ8

gs

16

3
π2R

3

2

4 U
7

2

0 h(e)

where we have defined e = E/U
5

2

0 and

h(e) =

∫ ∞

1

dx(
√

x5 + e2 − x
5

2 )
1

√

1 − 1/x3
.

Meanwhile, the energy from the charges in the electrostatic potential and the masses of

the pointlike instantons combine to give a term

Echarge = −(µ− µc)nB .

For µ > µc, the combined energy from the string endpoints (or Chern-Simons action)

and the D4-brane mass (or Born-Infeld energy of the instantons) is negative and should

be proportional to nB, while the energy from the flux is a positive function of nB which

11When performing the Legendre transform, it is important to note that ∂UA = FU0, so the Legendre

transform is F0U
∂L

∂F0U
− L. This is most clear in A0 = 0 gauge.
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behaves as n2
B for small nB and n

7

5

B for large nB. Thus, there will be some positive value

of nB where the total energy is minimized.

Defining

µ̃ =
6πα′µ

U0

,

so that µ̃ = 1 corresponds to µ = MB, and using the relation (2.6) between nB and E, the

total energy may be written as

E =
µ8

gs

16

3
π2R

3

2

4 U
7

2

0

(

h(e) − 1

3
(µ̃− 1)e

)

; .

From this, we find that the energy is minimized when

1

3
(µ̃− 1) = h′(e) .

This can be inverted to determine the relationship between nB (proportional to e) and µ

above the transition. For small µ− µc, we find

e ∼ 1

π
(µ̃− 1)

so

nB ∝ µ− µc small µ− µc .

For large µ we have

e ∼ 0.021µ̃
5

2

so

nB ∝ µ
5

2 large µ− µc

4.2 Dynamical charge distribution

The analysis of the previous section assumed that all charges were localized at U = U0.

Presumably, the charges would prefer to spread out dynamically. To take this into account,

we can define a charge distribution ρB(U) which we would like to determine. For a given

ρ, the energy from the string endpoints is

Estring = −Nc

∫

dUA(U)ρB(U) .

The energy from the baryon masses is

Emass =
Nc

6πα′

∫

dUρB(U)U

where we have used (3.2). For a given ρB, the electric flux is determined by solving

(2πα′)∂U

(

µ8

gs

8

3
π2R

3

2

4 U
5

2

[

1

f(U)
− ∂U Ã∂U Ã

]− 1

2

∂U Ã

)

= ρB(U)Nc (4.2)
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Finally, as above, the energy from the electric flux is

Eflux =
µ8

gs

8

3
π2

∫

dU
U

5

2R
3

2

4
√

f(1 − f(U)(∂UA)2)
(4.3)

The charge distribution for a given chemical potential should be determined by minimizing

Estring + Eflux + Emass

To carry out the minimization, it is simplest to work in terms of

E(U) = U
5

2

(

1

f(U)
− (∂U Ã)2

)− 1

2

∂U Ã .

Then

∂U Ã =
E

√

f(U)(U5 + E2)

and

ρB(U) =
C(2πα′)

Nc
∂UE

where

C =
µ8

gs

8

3
π2R

3

2

4 .

We then have

E
2C

=

∫ ∞

U0

dU

[

1√
f

(
√

U5 + E2 − U
5

2 ) +

(

1

3
U − Ã(U)

)

∂UE

]

= −(2πα′)µ∞E∞ +

∫

dU

[

1√
f

(

√

U5 + E2 − U
5

2 +
E2

√
E2 + U5

)

+
1

3
U∂UE

]

.

where we have included an extra factor of 2 in the denominator on the left side since we

are integrating over only half the brane on the right side. To maximize this, we can first

minimize over all E(U) such that E(U0) = 0, E(U → ∞) = E∞, and ∂UE > 0 to determine

E(E∞, µ). Then we can minimize over E∞.

Varying the energy functional with respect to E, we find that the energy functional is

locally stationary if and only if

3U5E + 2E3

(U5 + E2)
3

2

=

√

f(U)

3
(4.4)

This satisfies E = 0 for U = U0 as desired but approaches arbitrarily large values for large

U . On the other hand, our constraints ∂UE > 0 and E(U → ∞) → E∞ imply that E can

never exceed E∞. It is straightforward to check that the local contribution to the energy

from a point U is a function of E that decreases from E = 0 to the optimal value (4.4) and

then increases again, so when the value (4.4) exceeds E∞, the best we can do to minimize

the energy is to set E = E∞. We conclude that the minimum energy configuration for

fixed µ and fixed E∞ is

3U5E + 2E3

(U5 + E2)
3

2

=

√

f(U)

3
U < Umax

E = E∞ U ≥ Umax (4.5)
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Here Umax represents the extent of the charge distribution, and is related to E∞ as

3U5
maxE∞ + 2E3

∞

(U5
max + E2

∞)
3

2

=

√

f(Umax)

3
(4.6)

We can now write the energy as a function of E∞, or more conveniently, U∞ as follows.

We define a function g(x) by

3x5g + 2g3

(x5 + g2)
3

2

=

√

f̃(x)

3

where

f̃(x) = 1 − 1

x3
,

and define

H(x, g) =
1

√

f(x)

(

√

x5 + g2 − x
5

2 +
g2

√

x5 + g2

)

.

Then in terms of u = Umax/U0 and , the energy is given by

E = 2CU
7

2

0

{
∫ u

1

dxH(x, g(x)) +

∫ ∞

u
H(x, g(u)) − 1

3

∫ u

1

g(x)dx+
1

3
ug(u) − 1

3
µ̃g(u)

}

where as in the previous section, we define

µ̃ =
(6πα′)µ

U0

.

We can now minimize this as a function of u. The result is

µ̃ = u+ 3

∫ ∞

u
dx∂gH(x, g(u))

To compare with the results of the previous section, we note that (using (4.6)) the dimen-

sionless variable e proportional to the baryon mass is related to u by

3u5e+ 2e3

(u5 + e2)
3

2

=

√

f̃(u)

3
.

From these, we find that for small u− 1,

µ̃− 1 = c1(u− 1)
1

2 c1 ≈ 1.814 small u− 1

or

e ∼ 0.106(µ̃− 1)

where we have used (4.6). Thus, as before,

nB ∝ (µ− µc)

for small µ− µc, where the critical value of µ is as before. For large µ, we find

µ̃→ c2u c2 ≈ 1.672 large u
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or

e ∼ 0.0311µ̃
5

2 .

Again, we find that

nB ∝ µ
5

2 .

Thus, the qualitative behavior of nB(µ) is the same as in the simplified model of the

previous section, though the numerical coefficients come out different. We also found the

behavior of the energy density:

E ∝ (µ− µc)
4

for (µ− µc) small, and

E ∝ µ7/2

when µ is large.

It is interesting that (in this approximation) the charge distribution has a sharp edge

at U = Umax which progresses further and further towards the UV in the radial directions

as the chemical potential is increased. In the field theory picture, the radial direction

represents an energy scale, so the charge distribution we find in the bulk should be related

to the spectrum of energies for the condensed baryons. The edge of the distribution is then

a bulk manifestation of the Fermi surface.

Since our large Nc calculation does not distinguish between even and odd values of

Nc, it is insensitive to whether or not the baryons are fermions or bosons. Thus, the

Fermi surface that we see should probably be thought of as the quark Fermi surface. It

is interesting that the fermionic nature of the quarks in the field theory arises in the bulk

from the classical electrostatic repulsion between the instantons.

5. Two massless flavors

For Nf = 2, the authors of [16, 17] argued that single instantons on the D-brane pre-

fer to grow to some finite size on the baryon in order to balance the electrostatic forces

which tend to make the instanton spread out with the gravitational forces which prefer

the instanton to be localized as much as possible near the IR tip of the D8-branes. From

these considerations, we also expect that the minimum energy configurations with nonzero

baryon density will involve some smooth configuration of the nonabelian gauge field on the

D8-brane locally carrying an instanton density Tr(F ∧F ). In this section, we consider such

configurations.

The absence of homogeneous configurations. We first consider static, spatially ho-

mogeneous configurations, such that Aµ is translation invariant in the 3+1 directions of the

field theory and rotationally invariant (up to a gauge transformation) in the three spatial

directions (which we denote by an index i). The general configuration of the spatial gauge

field with these symmetries is

Aσ = 0 Ai =
1

4πα′
σih(σ) (5.1)

– 19 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
3

for an arbitrary function h(σ). These give12

F̃ij = − 1

4πα′
ǫijkσkh

2(σ) F̃iσ = −1

2
σih

′(σ) . (5.2)

From these, we find that

F̃iσF̃iσ =
3

4
(h′(σ))2112×2

1

2
F̃ijF̃ij =

3

(4πα′)2
h4(σ)112×2 .

We see that unless both h and h′ vanish for σ → ±∞, the Yang-Mills action density

integrated over σ will diverge, corresponding to an infinite energy density in the field

theory. On the other hand, we find

(F̃ ∧ F̃ )123σ =
1

8πα′
h2(σ)h′(σ) =

1

24πα′
∂σ(h3(σ))112×2 .

In order that we have a configuration with finite baryon density in the field theory, we

require that this instanton density, integrated over the sigma direction be non-zero.13 But

this requires that h(∞) 6= h(−∞), and we have already seen that such a configuration will

result in an infinite energy density in the field theory.

The apparent conclusion for the dual field theory is that there are no spatially homo-

geneous configurations with finite non-zero baryon density and finite energy density. Now,

there certainly are non-homogeneous configurations with finite average energy density and

finite average baryon density: we can simply take a periodic array of individual instantons.

For large enough chemical potential (greater than the energy density divided by the baryon

density), such configurations are favored over the vacuum, so we will certainly have a phase

transition to a phase with nonzero baryon density as the chemical potential is increased.

However, our observation suggest that this phase cannot be spatially homogeneous.

Interpretation of the inhomogeneity and origin of the chiral density wave. The

inhomogeneity of nuclear matter is not unexpected, and indeed is what we have for real

nuclear matter at low densities (e.g. in the interior of large nuclei). It simply reflects

the fact that the individual nucleons retain their identities (and therefore that the baryon

density is clumped14). What is perhaps surprising is that the inhomogeneity seems to have

a topological rather than a dynamical origin from the bulk point of view, following from

basic properties of instantons. It follows that even at arbitrarily high densities, the nuclear

matter will be inhomogeneous, though the scale of the inhomogeneities should become

shorter and shorter as the instantons pack closer and closer together. This suggests an

interpretation of the DGR “chiral density wave” instability of the quark Fermi surface [18]

at asymptotically large chemical potential: that even at arbitrarily high densities, quarks

in large Nc QCD bind into distinct nucleons, in contrast to the quark matter phase with

12We use conventions where {σi, σj} = 2δij11 and recall that F̃ ≡ (2πα′)F .
13To see this, note that the abelian electrostatic potential A0 couples to Tr(F ∧ F ), so that the change

in the action upon a constant shift in A0 (corresponding to a change in the baryon chemical potential) is
R

dσTr(F ∧ F ).
14Quantum mechanically this would be reflected in the behavior of density-density correlation functions.
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homogeneous condensates that we expect at large µ for finite Nc. This may be related to

the property that the density of a baryon diverges for large Nc and thus the baryon is more

and more sharply defined in this limit.

Our approximation. The absence of homogeneous configurations with finite baryon

density complicates the analysis of the phase transition and the properties of the nuclear

matter phase. We will not attempt to study the inhomogeneous configurations directly here.

Rather, we will describe an approach that approximates the inhomogeneous configurations

with singular homogeneous configurations.

Our approach is motivated by the observation that in the limit of infinite baryon den-

sity, the bulk configuration should become homogeneous. Such homogeneous configurations

are singular at the core, corresponding to a divergence of the instanton charge density. For

example, we can have a self-dual configuration of the form (5.1) if we choose

h(σ) =
1

σ
. (5.3)

This should arise from the limit of a periodic array of instantons for which the separation

is taken to zero while adjusting the scale factors to yield a non-trivial configuration in the

limit. We expect that some similar configuration15 should arise in our case as the minimum

energy configuration in the limit of infinite chemical potential.

As we move away from infinite density, the minimum energy configuration will only

be approximately homogeneous. We expect, however, that the averaged field strengths

and instanton density should be qualitatively similar to those for the configuration (5.3)

but with finite values at σ = 0. This behavior can be achieved in a configuration of

the form (5.1) for which h is an odd function like (5.3) but with some finite limit at

σ = 0. Such configurations are singular at σ = 0, but we will ignore any effects associated

with the singularity at σ = 0 since we are using our configurations to approximate non-

singular inhomogeneous configurations that do not have any pathologies at σ = 0.16 In

particular, we might expect that our approximation becomes exact in the limit of infinite

baryon density where we can have homogeneous configurations. We will find evidence

below that supports the validity of this claim. More generally, we find results that are in

accord with various physical expectations, providing further evidence for usefulness of our

approximation.

5.1 Energy density for approximate configurations

We would now like to analyze the behavior of the model as a function of chemical potential

in the approximation where we consider only configurations of the form (5.1), taking h to

be a monotonically increasing function for σ > 0 that takes some finite (negative) value

at σ = 0 and vanishes for σ → ∞. In practice, we work with the action for half the

brane, assuming that h is an odd function so that all the field strengths are symmetric

15not necessarily self-dual since we are working with the D-brane effective action in a nontrivial geometry
16This is similar in spirit to replacing a nonsingular charge distribution with a localized singular distri-

bution with the same multipole moments.
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about σ = 0. As we mentioned above, such configurations are singular at y = 0 but we

ignore any effects of the singularity, motivated by the expectation that the nonsingular

contributions may provide a good approximation to the averaged quantities for the non-

singular inhomogeneous configuration that we should really be studying.

The configuration of the spatial SU(2) Yang-Mills field carries instanton density, and

therefore acts as a source for the abelian electrostatic potential on the D8-branes. In order

to determine the potential A(U) for a given h(U), we need the equation of motion for A,

which should come from the non-abelian generalization of the Born-Infeld action (2.2) and

the Chern-Simons action (3.1).

As we have noted, the nonabelian generalization of the Born-Infeld action (2.2) is

known only up to F 6 terms. In the absence of the full result, we will work with a naive

ordering prescription in which we simply insert our ansatz into the abelian expression (2.2)

and (noting that each product of F s above gives an identity matrix) evaluate the trace.

This will give us results that are precisely correct in the limit where the field strengths

are small and only the Yang-Mills terms in the action are important, but we should not

trust numerical coefficients whose calculation depends on the higher order terms in the

Born-Infeld action.

Inserting the ansatz (5.2) into (2.2), we find (in the σ = U coordinates):

SDBI = −µ8

gs

16

3
π2R3

4

∫

d4xdUU

√

(

1

f(U)
− (∂U Ã)2 +

3

4
(h′(U))2)((U/R4)3 +

3

4

h4(U)

(2πα′)2

)

(5.4)

while the Chern-Simons term (2.1) gives:

S =
Nc

24π2

∫

Tr(A ∧ F ∧ F )

=
Nc

128π6(α′)4

∫

dUÃ∂U (h3(U)) . (5.5)

If we define

G =
1

f(U)
+

3

4
(h′(U))2

and

F = U

√

(U/R4)3 +
h4(U)

(4πα′)2

then the action takes the form

S = −C
∫

dUF

√

G− (∂U Ã)2 + k̂

∫

Ã∂U (h3)

where

k̂ =
Nc

128π6(α′)4

and

C =
16

3
π2µ8

gs
R3

4
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The equations of motion for the electrostatic potential A are

C∂UE = k̂∂U (h3)

where

E =
F∂U Ã

√

G− (∂U Ã)2
. (5.6)

From this, we conclude that

k̂h3 = C(E − E∞) (5.7)

where we have determined the integration constant by demanding that h vanish as U → ∞,

as is required for finite energy configurations. Since E vanishes by symmetry at U = U0

(assuming that there is no delta function charge distribution at U = U0) we see that the

asymptotic value of E is related directly to the value of h at U = U0 by

k̂h3
0 = −CE∞ . (5.8)

We may therefore rewrite (5.7) as

E =
k̂

C
(h3 − h3

0)

Using this result, the electrostatic potential may be determined in terms of h by invert-

ing (5.6).

We may now write an expression for the energy density of a configuration for a given

value of h(U).

Starting with the actions (5.4) and (5.5), we can derive the 3+1 dimensional energy

density via a Legendre transformation as we did in section 4. We find

E = C

∫

dU





FG
√

G− (∂U Ã)2
− Fh=0

√

Gh=0



− k̂

∫

Ã∂U (h3)

where we have subtracted off the energy density of the unexcited brane such that the

vacuum state is normalized to zero energy. We can now rewrite the energy in terms of h,

assuming that the equation of motion for A is obeyed. We have first

E = C

{

∫

dU
√

G(F 2 + E2) − F0

√

G0 +
E2

√
G√

F 2 + E2

}

− CÃ∞E∞

Now writing E in terms of h as above, changing variables to x = U/U0, defining

y = −
√

3

2

h

U0

, (5.9)

λ0 =
2gsNcls

3
√

3R
,
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and

µ̃ =
√

3Rµ =
λ0

3

µ

Mλ=∞
B

, (5.10)

we finally have

E =
CU

7

2

0

R
3

2

4





∫ ∞

1

dx







√

1

f̃(x)
+ (y′(x))2

x5 + λ2
0(x

2y4 + 2(y3 − y3
0)

2)
√

x5 + λ2
0(x

2y4 + (y3 − y3
0)

2)
− x

5

2

√

f̃(x)







− µ̃y3
0





(5.11)

Using the definition (5.9), and the relations (5.8) and (2.6), we find that y0 is related to

the baryon density by

nB =
π

12
√

3

(

4

9π

gsNcls
R

y0

)3 1

R3

=
2

27π2
λ3

0y
3
0

1

R3

Thus, minimizing this expression for µ̃ = 0 and fixed y0 will give the minimum energy

density for a fixed baryon density, which we denote by

Emin(y0)

The energy density per baryon is then proportional to Emin/y
3
0, and as we have argued

above, the minimum of this gives the critical chemical potential. In the next section, we

will analyze the functional (5.11), to obtain results for the behavior of Emin(y0) and for the

critical chemical potential.

5.2 Results

In this section, we discuss the evaluation of the baryon density for a given chemical poten-

tial based on minimizing the energy functional (5.11). Demanding that the functional is

stationary under local variations of y gives a second order differential equation for y. For a

given initial value y0 we find that there is a particular value of the initial slope y′0 for which

the solution approaches 0 as x→ ∞. For larger or smaller y′0 the solution approaches posi-

tive or negative infinity respectively for x→ ∞, giving a diverging energy functional, so the

minimum energy configuration must correspond to the solution with boundary condition

y → 0 at x→ ∞.

5.2.1 Small baryon density

We first study E(y0) in the regime where the baryon density is small. Since the full energy

at finite µ takes the form

E(y0, µ) = Emin(y0) − µ̃y3
0 ,

it is important to determine the behavior of Emin(y0) for small y0. As long as the potential

for µ = 0 is quadratic (or linear) for small y0, we must have a first order transition

to some finite baryon density at a critical chemical potential rather than a continuous

transition where the baryon density increases gradually from zero. The results we obtain

– 24 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
3

at small y0 are also very robust (within our approximation), since here all field strengths

and derivatives are small, and the incompletely known α′ corrections in the D8-brane

effective action are not important.

The terms in (5.11) coming from the Yang-Mills action are simply the leading order

kinetic and potential terms,

E =
CU

7

2

0

R
3

2

4

{

∫ ∞

1

dx

(

1

2
x

5

2

√

f̃(x)(y′(x))2 +
1

2
λ2

0

1

x
1

2

√

f(x)
y4

)

− µ̃y3
0

}

It is convenient to change variables to obtain a canonical kinetic term. Thus, we define u

such that
du

dx
=

1

x
5

2

√

˜f(x)
=

1√
x5 − x2

Choosing u = 0 to correspond to x = 1, we have

x(u) = sec
2

3

(

3

2
u

)

.

Note that x = ∞ corresponds to u = π/3, so we now have a finite domain, which is

convenient for our later numerical methods. Dropping the overall constant and working at

µ = 0 for now, we have

Ẽ =

∫ π
3

0

du

(

1

2
(y′)2 +

1

2
λ2

0x
2(u)y4

)

(5.12)

Extremizing, this gives rise to the differential equation

y′′(u) = 2λ2
0x

2(u)y3(u) (5.13)

As we discussed above, for a given y(0) > 0, solutions to this equation with slope larger

or smaller than some critical value will approach positive or negative infinity as u → π/3

and give rise to an infinite energy. The minimal energy configuration corresponds to the

critical value of the initial slope for which the solution approaches zero at u = π/3. For

y0 ≪ 1/λ, the solution is linear to a good approximation, since taking

y(u) = y0

(

1 − 3

π
u

)

(5.14)

we find that the right hand side of (5.13) is small enough that even the maximum value of

y′′ integrated over the interval would only change y′ slightly.

Thus, for y0 ≪ 1/λ, the energy is given by inserting (5.14) into (5.12), and we find

Ẽeff(y0) ∼
3

2π
y2
0 + O(λ2y4

0) small y0

Thus, the full energy E(y0, µ) is always positive for small enough y0, and the transition to

nuclear matter must be first order in our model.
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While we can no longer trust the Yang-Mills approximation for large y0 (of order

1/
√
λ or larger), it still interesting to look at behavior of the Yang-Mills terms in the

energy functional in this regime. Continuing to use only the terms (5.12), a numerical

study suggests the asymptotic behavior

Ẽeff ≈ 1

3
λ0y

3
0

Note that this asymptotic growth in the energy density as a function of y0 is not enough

to stabilize the baryon density to finite values for µ̃ larger than value

µ̃ =
1

3
λ0 .

Comparing with (5.10), we see that this value corresponds precisely to µ = M0
B. Thus,

we conclude that the α′ corrections in the Born-Infeld action are essential for stabilizing

the baryon density to finite values for large µ, and that without these, the baryon density

would diverge beyond a critical chemical potential that exactly coincides with the large λ

result for the baryon mass. In fact, we will see that at large λ the Born-Infeld corrections

only modify this critical chemical potential by terms of order 1
λ .

5.2.2 The critical chemical potential

Now that we have demonstrated that there must be a first order phase transition to nuclear

matter in our model, we would like to determine the critical value of µ above which a non-

zero baryon density is favored, and the baryon density as a function of µ above this. Thus,

we repeat our numerical study from the previous section, but this time with the full energy

functional. In this case, the differential equation for y (using the same coordinates) is

y′′ = − 5

2x6
(y′)3

dx

du
+ ((y′)2 + x5)∂y lnH − y′

dx

du

(

1 +
(y′)2

x5

)

∂x ln(H)

where

H(x, y) =
1 + λ2( y4

x3 + 2 κ
x5 (y3 − y3

0)
2)

√

1 + λ2( y4

x3 + κ
x5 (y3 − y3

0)
2)
.

As before, the energy is minimized for a critical solution to this equation that approaches

0 at u = π/3.

Our results indicate that the energy Emin(y0) behaves as a quartic function of y0 for

large y0, so the Born-Infeld terms stabilize the baryon density to finite values for any value

of µ. As we have discussed, the critical value of the chemical potential beyond which a

nuclear matter phase is favored is given by the minimum value of the energy per baryon.

Specifically, we have

µ̃c = miny0

Ê
y3
0

;

We have numerically evaluated this critical chemical potential for large values of λ ranging

from λ = 10 to λ = 3000. Our data for µcrit at large λ are fit very well with a function

µcrit = M0
B(A+ cλ−1

0 + O(λ
− 3

2

0 )) (5.15)
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where the best fit values are

A ≈ 0.9999 c ≈ 12

Thus, to very good accuracy, the critical value of the chemical potential approaches the

baryon mass for large λ. Though our analysis using singular homogeneous configurations

is an approximation, it is implausible that the almost exact agreement between the critical

chemical potential and the baryon mass that we find here for large λ is a numerical coinci-

dence. A more plausible explanation is that the ratio of the critical chemical potential to

the baryon mass does approach 1 in the limit of large lambda, and that our approximation

gets this leading result correct. This is in accord with the expectation that our approxima-

tion should become exact in the limit of large baryon density, since as we will see below,

the baryon density just above the transition does approach infinity as λ becomes large.

Thus, we believe that a robust conclusion of our analysis is that the binding energy

per nucleon for large λ is a vanishing fraction of the baryon mass.

5.2.3 The binding energy per nucleon

To determine the actual value of the binding energy, we need to compare the subleading

term in (5.15) with the subleading term in the baryon mass.

Even if our approximation is also correct for this subleading term, evaluating the coef-

ficient c here depends crucially on the higher order terms in the Born-Infeld action. Since

we have used the abelian D8-brane action together with an ad-hoc ordering prescription in

lieu of the unknown full result for the effective action, we expect that the numerical value

here is not reliable, However, the result that the correction is of order λ−1 (rather than

e.g. λ−
1

2 ) should be robust.

Similarly, a correct calculation of c′ in the result

MB = M0
B

(

1 +
c′

λ0

+ . . .

)

for the baryon mass discussed in section 3.1 probably requires more complete knowledge

of the non-abelian effective action. However, recalling that the leading order result for the

baryon mass is proportional to λ, we see that the result for the binding energy per nucleon

(MB − µc) is actually relatively insensitive to λ for large λ. Since we also know that this

binding energy approaches some constant value in the limit of small λ (the large Nc QCD

result with two massless flavors), then assuming a smooth behavior at intermediate values

of λ, we can treat the large λ result as a prediction for the order of magnitude of the QCD

result.17

Noting that MKK ≈ ΛQCD for large λ, the value of the binding energy per nucleon

extrapolated to Nc = 3 becomes

Ebind =
1

9π
ΛQCD(c′ − c) ≈ 7 MeV(c′ − c)

17Another example with similar insensitivity to λ for both large and small λ is the free energy of N = 4

SUSY Yang-Mills theory. Here, it is indeed the case that the large λ result for the free energy gives a good

prediction of the order of magnitude of the the small lambda result (or vice versa).

– 27 –



J
H
E
P
0
1
(
2
0
0
8
)
0
5
3

As we have noted in the introduction, this is indeed of the same order of magnitude as the

physical QCD result of 16MeV assuming that c′ − c is of order one.

5.3 Baryon density above the transition

We can also calculate the baryon density just above the transition. Our results suggest

that just above the transition, the preferred value of y0 for large λ behaves like

y0 → Kλ−
1

2

for K ≈ 0.31. This suggests that

nBR
3 ∝ λ

3

2

as λ is increased. This is consistent with the finding of Sakai and Sugimoto that the baryon

size goes like λ−
1

2 .

For large chemical potential, the result that the µ = 0 energy density approaches y4
0

for large y0 implies that the baryon density minimizing E(y0 ∝ n
1

3

B) − µnB for large µ is

nB ∝ µ3

Also, the energy density as a function of µ for large µ behaves as

E ∝ µ4

Note that the powers here are those appropriate for free fermions. We would like to

understand this point better.
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A. Holographic dictionary

Consider a configuration (before decoupling) with a D4-brane in the 01234 directions (with

x4 noncompact) and a D8-brane in the 012356789 directions, but bent in a U shape so as

to intersect the D4-brane at two places along x4. Locally, one of these intersections is a

D8 and the other is a D̄8. Now, we are interested in the coupling between the D8-brane

gauge field and the operators

BL = ψ†
LψL

at the one intersection and

BR = ψ†
RψR
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at the other intersection. We define ψ†
L and ψ†

R such that they create particles with positive

charge on the D4-brane, or physically, such that a test charge on the D4-brane is repelled

from both of these particles. In this case, the baryon number operator is

B = 1/Nc(ψ
†
LψL + ψ†

RψR)

and we have a coupling a0B in the effective action where a0 is the time component of the

D4-brane gauge field.

We would now like to understand how the two operators BL and BR couple to the

D8 brane gauge field. To do this, we note that if we perform a rotation by π in the 1-4

directions, centered at the point on the D4-brane between the two D8-branes, we get back

to precisely the same configuration, since the D4-brane does not change orientation, while

the D8 and D̄8 branes will switch orientation but also switch position.

Now, suppose we have a configuration with one ψ†
L particle at the D8 intersection. This

repels a test charge on the D4-brane, so after the rotation it is still a particle that repels a

test charge, but now it is a particle at the D8-bar intersection. It must therefore be a ψ†
R

particle. Thus, a ψ†
L particle is mapped to ψ†

R particle. Now, suppose that we have a test

charge on the D8-brane that is repelled by the particle in the initial configuration. In the

rotated configuration, this test charge will still be repelled (by the ψ†
R particle). Also, the

test charge in the new configuration will have the same sign as in the old configuration, since

we have simply performed a rotation. This means that if we describe the entire U-shaped

D8-brane using a single patch, both ψ†
L and ψ†

R particle will source electric fields pointing

away from the D4-brane (or both towards the D4-brane, depending on our convention).

This implies further that if we use a single field A0 over the entire D8-brane config-

uration, then the coupling of A0 to BL at the D8 intersection will have the same sign as

the coupling of A0 to BR at the D8-bar intersection. For the Sakai-Sugimoto setup, this

implies that if we want to turn on a chemical potential for baryon number (i.e. turn on the

operator B), we want to choose A0 to have the same sign at σ = ∞ as at σ = −∞ (if we

use the same gauge field over the whole brane configuration).
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