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ABSTRACT: We study the Sakai-Sugimoto model of holographic QCD at zero temperature
and finite chemical potential. We find that as the baryon chemical potential is increased
above a critical value, there is a phase transition to a nuclear matter phase characterized
by a condensate of instantons on the probe D-branes in the string theory dual. As a result
of electrostatic interactions between the instantons, this condensate expands towards the
UV when the chemical potential is increased, giving a holographic version of the expansion
of the Fermi surface. We argue based on properties of instantons that the nuclear matter
phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation
of the “chiral density wave” instability of the quark Fermi surface in large N, QCD at
asymptotically large chemical potential. We study properties of the nuclear matter phase
as a function of chemical potential beyond the transition and argue in particular that the
model can be used to make a semi-quantitative prediction of the binding energy per nucleon
for nuclear matter in ordinary QCD.

KEYWORDS: [Gauge-gravity correspondence, D-branes, Brane Dynamics in Gaugd

[Theoried.



mailto:rozali@physics.ubc.ca
mailto:shieh@physics.ubc.ca
mailto:mav@physics.ubc.ca
mailto:jwu@triumf.ca
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch

Contents

. Introduction and summary

=

2. The Sakai-Sugimoto model
P.] Adding fundamental matter
P9 D8-brane action
.3 Chemical potential for baryon charge

P-4 Asymptotic solutions

[ GOl

Baryons
B-] Baryon mass
B.9 Critical chemical potential

EEE

D]

One flavor physics
] Localized source approximation

BEE

3 Dynamical charge distribution

Bl Two massless flavors
b.] Energy density for approximate configurations
b7 Results
F-2.] Small baryon density
b.2.4 The critical chemical potential
F.2.d The binding energy per nucleon

FEEEREEE

b3 Baryon density above the transition

[Al. Holographic dictionary

1. Introduction and summary

QCD at finite temperature and chemical potential. The phase diagram of QCD
as a function of temperature and baryon chemical potential (or alternatively baryon den-
sity) displays a rich variety of phases and transitions (for reviews, see [[[-f]). However,
apart from the regimes of asymptotically large temperature or chemical potential, where
some analytic calculations are possible, and of zero chemical potential, where reliable lat-
tice simulations are possible, our knowledge of the phase diagram is based exclusively on
extrapolations and semi-empirical toy models. For intermediate values of the chemical po-
tential, numerical simulation is plagued by a notorious ‘sign problem’ (see for example []),
while analytic calculations are not possible due to strong coupling. Thus, while there has



been significant progress recently in understanding the qualitative features of the phase di-
agram, reliable quantitative calculations that would definitively verify the proposed phase
structure or determine the locations of various transitions or properties of the various
phases seem a formidable challenge at present. A better understanding of the details of
the phase diagram at intermediate chemical potential would have valuable applications, for
example in understanding the physics of neutron-star interiors.

Holographic models of QCD. With the advent of the gauge theory / gravity dual-
ity [B], we have a new tool for studying the properties of certain strongly coupled gauge
theories. While the original and most studied examples involve highly supersymmetric
conformal gauge theories without fundamental matter, much progress has been made in
constructing examples without supersymmetry [ff, with confinement [ff], with fundamental
matter [[j] and with chiral symmetry breaking [§]. We now have examples of gauge theories
with a known gravity dual that share most of the qualitative features of QCD, and the
duality permits analytic calculations that would be otherwise impossible.

It is obviously interesting to study these QCD-like theories in regimes for which neither
analytic or numerical studies are currently possible in real QCD. One such regime is the
near-equilibrium behavior of the theory at finite temperature . This has received a great
deal of attention recently (see [] for a review) since calculations in holographic' models
of QCD-like theories do a better job of explaining and predicting some properties of the
quark-gluon plasmas produced in relativistic heavy-ion collisions than any other approach.
In the present paper, our focus will be on another such regime as described above, the
equilibrium properties at finite baryon chemical potential.

There is already a large literature on studies of gauge theories at finite chemical poten-
tial using gravity duals (see [[] and references therein). Many of these consider a chemical
potential for R-charge in theories with only adjoint matter. There have been some some
studies of the behavior of theories with fundamental matter at finite baryon chemical po-
tential, but the early examples of holographic theories with fundamental matter had both
bosonic and fermionic fields carrying baryon charge. In these cases, the physics at finite
chemical potential involves Bose condensation rather than the formation of a Fermi surface.
In order to get behavior similar to real QCD, it is essential to study a theory with baryon
charge carried exclusively by fermionic fields. Such a model was constructed a few years
ago by Sakai and Sugimoto [[[(]], and it is this model that we will focus on the present work.

The Sakai-Sugimoto model. The details of the Sakai-Sugimoto model are reviewed
in section 2. Briefly, the model gives a holographic construction of a non-supersymmetric
SU(N.) gauge theory with Ny fundamental fermions. The gravity dual involves Ny D8-
branes in the near-horizon geometry of N. D4-branes wrapped on a spatial circle with
anti-period boundary conditions for the fermions. In the geometry, the compact direction
of the field theory together with the radial direction form a cigar-type geometry, in which
the D8-branes are embedded as shown in figure 1. The other directions include an S4

'Here "holographic’ is a now conventional term referring to the equivalence between a higher-dimensional
gravitational theory and a lower-dimensional field theory.



Figure 1: Type ITA string theory configuration for the Sakai-Sugimoto model.

carrying N, units of D4-brane flux and the 3 + 1 directions of the field theory. In addition
to Ny and N, the theory has a dimensionless parameter A, the 't Hooft coupling at the
field theory Kaluza-Klein scale.?

For small values of A, the scale Aqcp where the running coupling becomes large is well
below the field theory Kaluza-Klein scale, and the low-energy physics should be precisely
that of pure SU(N) Yang-Mills theory coupled to Ny massless (fermionic) quarks.® Un-
fortunately, in this limit, the dual gravity background is highly curved so we are not in
a position to study it. For large A on the other hand, the gravity background is weakly
curved, and so via classical calculations on the gravity side of the correspondence, it should
be possible to map out the phase diagram of the field theory as a function of temperature
and chemical potential and quantitatively determine properties of the various phases.

We do not expect our results to agree quantitatively with real QCD (both because the
Kaluza-Klein scale is not well separated from Agcp for large A and because the classical
calculations give only the leading terms in the 1/N expansion), but it would certainly be
interesting to have a precise understanding of the phase diagram for a theory that is so
similar to QCD. Indeed, at least some features of the phase structure and the qualitative
behavior of certain transitions are likely to be the same as in QCD, and we might even
hope for rough quantitative agreement for quantities that are relatively insensitive to A
and N, (we will discuss one such quantity below).

The transition to nuclear matter. Our focus in this paper will be on the part of
the phase diagram for zero temperature and intermediate values of the baryon chemical
potential. In real QCD, as we increase the chemical potential from zero, the equilibrium
state (i.e. the ground state) continues to be the vacuum until some critical value of the
chemical potential at which point it becomes advantageous for baryons to condense. A first
approximation to this critical value is the baryon mass, since it is at this point where it
becomes energetically favorable to add single baryons to the vacuum. In fact, the critical

2The model has another parameter, corresponding to the asymptotic separation between the D8-branes,
but we focus exclusively on the case where the two stacks are on opposite sides of circle and extend down
to the tip of the cigar.

3For recent work on adding quark masses, see [@, E]



value is somewhat lower, since the baryons have a negative binding energy. At the critical
value, we have a first order transition from the vacuum state to homogeneous nuclear matter
with some minimal baryon density.* The best estimate for the critical chemical potential
comes by studying the masses of atomic nuclei as a function of nucleon numbers [[1§]. These
are fit very well by the Weizsacker-Bethe semiempirical mass formula, which includes a term
proportional to the number of nucleons,

Myol = — bvolf4

to take into account the energy —by, due to strong interactions of each nucleon in the
interior of a nucleus with its neighbors plus the average kinetic energy per nucleon (non-
zero due to Fermi-Dirac statistics). The best fit for this energy is

byol = 16 MeV . (1.1)

Ignoring electromagnetic interactions, this gives the binding energy per nucleon in the limit
of large nuclei, and thus should be a good approximation to the value for homogeneous
nuclear matter just beyond the transition. Thus, the critical chemical potential for the
transition to nuclear matter in QCD should be approximately

fe = Mp <1 - b“’l) ~ Mp(1—0.017) .
Mp

As we increase the chemical potential further, the baryon density and the energy per baryon

will increase from their values just above the transition. Eventually we hit at least one

more transition, to a phase characterized by quark-quark condensates [fl].

In this paper, we will study the physics of the transition to nuclear matter in the Sakai-
Sugimoto model at large A. Via classical calculations in the dual gravitational theory, we
will be able to determine the critical chemical potential and calculate the baryon density
np(p) and the energy per baryon ep(u) for p above the transition.

Expectations at large IN. Since our gravity calculations will give results corresponding
to the large N, limit of the field theory (with a fixed N¢), we should briefly recall the
expectations for how baryons behave for large N, [L3J). In this limit, baryon masses and
baryon-baryon interaction energies go as NN., but the baryon size approaches a constant.
Thus, we expect that both the baryon density above the transition and the binding energy
per nucleon divided by the baryon mass to have a finite limit for large N.. These properties
indeed follow from our calculations.

One significant difference between the large N, theory and ordinary QCD is the ex-
pected behavior at asymptotically large values of the chemical potential. In both cases,
we have attractive interactions between excitations on the Fermi surface that result in an
instability, but the nature of the resulting condensates is different. Whereas for N, = 3

4t is important to note that we are talking only about QCD and ignoring electromagnetism here.
With electromagnetic interactions, the binding energy per nucleon is actually greater in iron nuclei than in
homogeneous nuclear matter, so the transition to nuclear matter is preceded by a transition to solid iron.



the instability is a BCS-type instability, believed to lead to a color superconductor phase,
the dominant instability at large N, is toward the formation of “chiral density waves” [L§],
inhomogeneous perturbations in the chiral condensate with wave number of order twice the
chemical potential. This suggests that the ground state for large N, QCD at large enough
chemical potential is inhomogeneous, however the nature of the true ground state remains
mysterious (see [I9] for a recent discussion). We believe that our analysis sheds some light
on this question, as we will discuss shortly.

Results for the Sakai-Sugimoto model. In the Sakai-Sugimoto model, a chemical
potential for baryon number corresponds to a nonzero asymptotic value of the electrostatic
potential on the D8-branes, equal on both asymptotic regions of the D8-brane. Generally,
this potential behaves asymptotically (for radial coordinate U to be described below) as

C
+

AONMB+EU3/2

The baryon density npg is proportional to the asymptotic abelian electric flux E, so configu-
rations with non-zero baryon density in the field theory correspond to D8-brane configura-
tions with sources for the electric flux. These sources can be either string endpoints on the
D8-branes which originate from D4-branes wrapped on the internal S* of the geometry [[I4]
or (for Ny > 1) configurations of the Yang-Mills field carrying instanton charge [[L6, [L7).
The latter can be thought of as the wrapped D4-branes dissolved into the D8-branes and
expanding into smooth instanton configurations.

One flavor. For any value of chemical potential, we always have a trivial solution for
which the electrostatic potential is constant on the D8-branes and the baryon density is
zero. However we can also consider translation invariant configurations with a uniform
baryon density. In the single flavor case, which we consider first, the bulk description of
baryons is in terms of pointlike instantons, since there are no large instanton configurations
in the abelian gauge theory of a single D8-brane. In this case, configurations with a uniform
baryon density correspond to having some density of these pointlike instantons on the D8-
brane. For a given value of the chemical potential greater than the critical value, we find
some preferred distribution of charges on the D8-brane. The total baryon density for a given
value of p may be read off from the asymptotic value of the electric flux, and the result
increases smoothly from 0 above the critical chemical potential, approaching an asymptotic
behavior np ,u%. The charge distribution in the radial direction for a given value of u
represents the distribution of energies in the condensate of baryons in the field theory.
In particular, the distribution has a sharp edge at some value of the radial coordinate
which increases for increasing chemical potential, and this gives a bulk manifestation of
the (quark) Fermi surface in the field theory.

For the single flavor case, the transition to nuclear matter is continuous, unlike QCD,
but it may be expected that the single flavor case is different due to the absence of pions
which usually play a crucial role in interactions between nucleons.

Two flavors. In the case with Ny > 1, we can have nonsingular instantons on the
Ny coincident D8-branes, and the minimum energy configurations for large enough p are



should involve smooth configurations of the nonabelian gauge field carrying an instanton
density. While we might expect this to be homogeneous in the field theory directions,
we argue that there are no allowed configurations of the D8-brane gauge field that are
spatially homogeneous in the three field theory directions such that the net energy density
and baryon density in the field theory are both finite. Thus, any phase with finite baryon
density is necessarily spatially inhomogeneous. This has a simple interpretation: it suggests
that at large N, the nucleons retain their individual identities for any value of the chemical
potential. Assuming that this holds true also for small A where the theory becomes 2 flavor
QCD, this suggests that the chiral density wave instability of the quark Fermi surface
in large N, QCD simply indicates that the quarks want to bind into nucleons even at
asymptotically large densities. This is discussed further in section 5.

To avoid the complication of directly studying inhomogeneous configuration, we ap-
proximate these by certain singular homogeneous configurations, arguing that our approx-
imation should become exact in the limit of large densities. Within the context of this
approximation, we study the behavior of the system as a function of chemical potential.

Our model displays a first order transition to nuclear matter at some critical chemical
potential that depends on the parameter A\, with the baryon density behaving as np oc u?
for large p. In the limit of large A, the critical value approaches the baryon mass, so the
binding energy per nucleon is a vanishing fraction of the baryon mass at large \.°

For large but finite A, we find the behavior

_ /0 ¢ 1
uC_MB<1+)\+O<)\g)>

where MY is the large ) result for the baryon mass

1
MY = —— MggAN. .
B = oy TRK

On the other hand, the baryon mass for large but finite A is [I§, [[7]

M—M°1+C—/+O—L

It is interesting that the result for the binding energy per nucleon at the threshold for

nuclear matter formation,

BEyina = Mp — pie = 2N7CMKK(C' -0,
w
is actually insensitive to the value of A for large A. Since we also know that this binding
energy approaches some constant value in the limit of small A (the large N, QCD result
with two massless flavors), then assuming a smooth behavior at intermediate values of A,
we can treat the large A result as a prediction for the order of magnitude of the QCD

5While this statement is derived in the context of our approximation, we argue that it should be true in
the full model.



result.® Noting that Mik ~ Aqcp for large A, the value of the binding energy per nucleon
extrapolated to N, = 3 becomes

1
Ehpind = 97AQCD(6/ —¢)~ 7TMeV(d —¢)

In order to reliably compute the the numerical coefficients ¢ and ¢/, we require knowledge
of the nonabelian analogue of the Born-Infeld action, and (in the case of ¢’) probably
corrections to this involving derivatives of field strengths. However, assuming ¢’ — ¢ is of
order one,” we do obtain the same order of magnitude as the QCD result ([[.). We are not
aware of any other methods to reliably estimate this binding energy from first principles, so
it is possible that a more complete calculation in the Sakai-Sugimoto model would represent
the most reliable analytic prediction of this quantity.

Outline. The remainder of the paper is organized as follows. In section 2, we review the
Sakai-Sugimoto construction and collect various results necessary for our investigation. In
section 3, we review the description of baryons in the Sakai-Sugimoto model and outline
the basic approach for studying the theory at finite chemical potential. In section 4, we
consider the single flavor case, calculating the baryon density as a function of chemical
potential above the transition to nuclear matter. In section 5, we discuss the two flavor
case, introduce our approximation, and set up a variational problem that determines the
minimal energy configuration with a fixed baryon density (within our approximation). We
then study the variational problem numerically for various values of chemical potential
and baryon density to determine the critical chemical potential above which the minimum
energy configuration has non-zero baryon density.

Related work. Our work complements and extends various previous studies of the phase
diagram for the Sakai-Sugimoto model. The behavior at finite temperature was analyzed
in [B9]. The behavior of the Sakai-Sugimoto model at finite chemical potential has also
been discussed (with a different focus from the present paper) in 3, P4, B6]. Discussions
of the finite density behavior in other holographic models of QCD include [, B9, S, B7, B4l

While this paper was in preparation, the paper [BJ] appeared, which has some overlap
with the present work, in particular section 4.1.

2. The Sakai-Sugimoto model

The basic setup for the Sakai-Sugimoto model [I(] begins with the low-energy decoupling
limit of N. D4-branes wrapped on a circle of length 27 R with anti-periodic boundary
conditions for the fermions [ff]. Apart from N, this theory has a single dimensionless

parameter
_ Ap4
2R’

6 Another example with similar insensitivity to A for both large and small X is the free energy of N' = 4
SUSY Yang-Mills theory. Here, it is indeed the case that the large A result for the free energy gives a good
prediction of the order of magnitude of the the small A result (or vice versa).

"We must also assume that our approximation scheme at least gets the right power of X in the correction
to pe.



the four-dimensional gauge coupling at the Kaluza-Klein scale. Because of the antiperiodic
boundary conditions, the adjoint fermions receive masses of order 1/R while the scalars get
masses of order A\/R due to one-loop effects. The coupling runs as we go to lower energies,

becoming strong at a scale
1

AQCD ~ Ee%
for some numerical constant c. As pointed out by Witten [f], for small ), the dynamical
scale Aqcp is far below the scale of the fermion and scalar masses and the Kaluza-Klein
scale, so the dynamics should be exactly that of pure Yang-Mills theory.
The field theory here is dual to type IIA string theory on the near-horizon geometry
of the branes. The Lorentzian metric, dilaton, and four-form field strength are given by

3 3
2 2 1
ds® = <U> (nudztdz” + f(U)dz3) + (R“) (dU2 - U%Qi)

Ri) U f)
U 1
¢ _ Y
& = g, (R)
Fy = 27TNC64
Wy

where wy is the volume of a unit 4-sphere, ¢, is the volume form on S*, and

FU) =1— (%})3 .

The x4 direction, corresponding to the Kaluza-Klein direction in the field theory, is taken to
be periodic, with coordinate periodicity 27 R, however, it is important to note that this x4
circle is contractible in the bulk since the x4 and U directions form a cigar-type geometry.

The parameters Ry and Uy appearing in the supergravity solution are related to the
string theory parameters by

4
R} = mg N3 Up = Q—I;gszvczg’

while the four-dimensional gauge coupling A is related to the string theory parameters as

gchls

A=2
™R

In terms of the field theory parameters, the dilaton and string-frame curvature at the tip of
the cigar (the IR part of the geometry) are of order A2 /N, and VA, s0 as usual, supergravity
will be a reliable tool for studying the infrared physics when both A and N, are large (in
this case, with N, > )\%)

Note that this is opposite to the regime of A where we expect pure Yang-Mills theory
at low energies. However, we may still learn about pure Yang-Mills theory by studying
this regime, since many qualitative features of the theory remain the same and we might
expect further that certain quantitative features may be relatively insensitive to the value
of A (as for example with the free energy in NV =4 SYM theory).



2.1 Adding fundamental matter

Now that we have defined the adjoint sector of the theory, we would like to add fundamental
quarks. We keep the number of quark flavors fixed in the large IV, limit, but this means
that the number of degrees of freedom in the fundamental fields (including the gauge field)
is smaller than the number of degrees of freedom in the adjoint sector by a factor N¢/N..
Thus, for Ny fixed in the large N, limit, the influence of the fundamental fields on the
dynamics of the adjoint fields should be negligible.® In other words, what is known as
the “quenched approximation” in QCD literature is exact in this limit. This implies that
adding the additional matter does not modify the geometry, and indeed the construction of
Sakai and Sugimoto (following earlier constructions) involves adding branes to the geometry
which are treated in the probe approximation.

The Sakai-Sugimoto construction is motivated by the observation that the light open
string modes living at a 341 dimensional intersection of D4-branes and D8-branes give rise
to chiral fermion fields on the intersection without accompanying bosons. Thus, to the
original D4-branes, which we can take to lie in the 01234 directions with the x4 direction
periodic, Sakai and Sugimoto consider adding a stack of Ny D8-branes and a stack of Ny
anti-D8 branes separated at fixed locations in the x4 directions and extended along the
remaining directions. This configuration is unstable before taking a near horizon limit,"
nevertheless, one can obtain a stable configuration of the probe branes in the bulk geometry
by fixing the asymptotic positions of the D8 and D8-bar stacks in the x4 direction. The
x4 positions of the branes are free to vary as a function of the radial direction U in the
bulk of the geometry, and charge conservation implies that the two stacks necessarily join
up in the interior of the geometry. Thus, (in the zero-temperature situation that we are
considering) we really have just a single set of D8-branes, bent so that the orientation in
the two asymptotic regions is opposite (see figure 1).

The specific embedding of the D8-branes in the bulk depends on the asymptotic sepa-
ration of the stacks (and also any distribution of matter on the branes), but we will focus
exclusively on the case where the two asymptotic parts of the D8-brane stack sit at opposite
sides of the D8 circle, in which case each side simply extends to the tip of the cigar along
a line of constant x4 as shown in figure 1. The corresponding field theory has all flavors
massless.

2.2 D8-brane action

To understand the physics of the probe D8-branes, we will need the action for the world-
volume D8-brane fields in the background above. We will begin by discussing the action
for a single D8-brane before discussing the nonabelian generalization.

8Tt would be quite reasonable to argue that we should keep Ny /N, fixed for large N, to obtain a theory
that is most qualitatively similar to QCD, since then the number of degrees of freedom in the adjoint and
fundamental sectors of the theory remain of the same order of magnitude for large N. However, this limit
is much more difficult to study using supergravity, since then the back-reaction of the matter branes, to be
described presently, must be taken into account.

9This instability is actually absent in the case we consider the stacks sit at opposite sides of the circle



The Born-Infeld action for the worldvolume D8-brane fields (in the case of a single
brane) is

S = —us / d906_¢\/— det(gab + Fup)

where
F =21d'F

We also have a Wess-Zumino term
S = ug / ef' A ZC’ .

Here, only the C3 term contributes. Noting that I3 is the derivative of the five-dimensional
Chern-Simons form, ws and integrating by parts, we get

S:—MS/F4/\LU5.

After integrating over the sphere, this gives
 24n?

where dws = FFA F A F. For a single D8-brane, ws = AANF A F.
To simplify the Born-Infeld action, we can choose to identify the worldvolume and

ws(A) (2.1)

spacetime coordinates in the sphere and the field theory directions, and parameterize the
profile of the brane in the U and x4 directions by U(o) and X (o) respectively (we will soon
focus on the solution where X (o) is constant).

We will be interested only in time-independent configurations homogeneous and
isotropic in the spatial directions of the field theory (which we label by indices i, j, k).
The most general configurations we will consider will have non-zero F,;, F;;, and Fy,, all
functions only of o.

Integrating the determinant from the sphere directions over the sphere, we get a factor

8
§7r2RiU

while the remaining five-dimensional determinant is
— det(gW + FMV) = _(G[)Ogo'o' + FO%, + gooﬁgi(g + F)ijpgj) det(Gij + FU)

with
gO'O' = G4480'—X80'X + Guuao'Uao-U .

Note that we are using G here to refer to the spacetime metric and g for the worldvolume
metric. The final result (in the Abelian case) is

] U\ 2 U 3
Mg 2R3/ l4 loU 2 1 2
)B — 7[ .7: 0} gCTO' F + F 5 2.2
g ! gs 3 4 { <<R4 0o R4 2 Y ( )

U\® - 1 - - 2
+ <R4> F2+ (26z'ijiaij)2}

[ M][eV)

=

~10 -



This action is manifestly invariant under reparametrizations of o. The nonabelian gener-
alization of this action is known only up to F% terms. Up to order F*4, we symmetrize all
of the nonabelian field strengths in expanding the square root and take an overall trace.
However, this symmetrized trace prescription is known to fail beyond order F4.

2.3 Chemical potential for baryon charge

We would like to study the theory at finite chemical potential for baryon charge or alter-
natively, the theory with a modified Hamiltonian density

H=H+uB
where B is the baryon charge density operator

B =By +Br =9l ¢n +¢hir .

This is equivalent to adding a term —uB to the action since there are no time derivatives
in B. Turning on the operator B in the boundary gauge theory with real coefficient u
should correspond to turning on some (real) non-normalizible mode in the gravity picture.
From the original brane setup, we know that the operators By, and Bg couple to the time-
components of the D8 and D8 brane gauge fields respectively. We will see below that the
equations of motion for these fields require them to approach some constant values in the
UV part of the geometry. If we describe the probe branes as above with a single gauge
field for the whole configuration, then we have two such constant values,

As = Ap(o = o0)
and
A—oo = Ao(O' = —OO)

These two values give the chemical potentials for the operators By, and Bg.! Thus, to
work at finite chemical potential for baryon number, we require that the value of Ag in
both asymptotic regions of the D8-brane approaches the constant up.

2.4 Asymptotic solutions

In the simple case where the D8-brane is at constant x4 and we assume that only the
electrostatic potential is turned on, the Born-Infeld action above reduces to

1

Sppr = —F88 23 / dod*zU [18(,U80U - 80218021} ’ (2.3)
s 3 fU)

The reparametrization invariance allows us to chose U(o) to be whatever we like. For a

given choice of U, the equation of motion for A away from any sources (which we assume

are localized in the infrared part of the geometry) is

1
/1/88 2 3 5 |: 1 ~ ~:| 2 ~
Oy | —=n*R;U2 | ——0,U0,U — 3,A0,A 0;A| =0 2.4

<gs R TGy 24

10VWe give an argument in appendix A to establish that By and Bg are turned on with the same sign if
As and A_ have the same sign.

- 11 -



The quantity in round brackets is analogous to the conserved electric flux. Integrating and
rearranging, and choosing o = U (valid for either half of the brane), we get

E
VIO)(U? + E?)

where E is an integration constant proportional to the conserved flux. Solving this, we
find

DA = , (2.5)

A=i. [ £
v JF)d + E?)
~ 2 F
— A+
taat

valid in the region outside the sources. The constant E is the normalizible mode of Ay in
the asymptotic solution, so the values of E for the two sides of the brane correspond to
the expectation values for By, and Bp in the field theory.

3
In general, the sum of the E's for the two halves of the brane (times %%WQRZ (2ma))
is equal to the total charge density on the brane,

ps 8

3
g 371'2Rj (27 ) (Es + E1) = q

If we fix Ao = A_o as we have argued corresponds to a chemical potential for baryon
number, and we assume that the sources are symmetric under a reflection in the o direction,
then for continuous Ay we must have Fq = E5, and

8 . 8
??2342 (2rd))E = q/2 (2.6)

Since the charge density in the bulk (divided by N.) corresponds to the baryon density in
the field theory, we obtain

1 3
is 10 o pt o) B (2.7)

ng =
gsNe 3

3. Baryons

We have seen that configurations with non-zero baryon charge density (as measured by the
asymptotic electric flux E) require sources for Ay on the D8-branes. The basic source for
Ap is the endpoint of a fundamental string. In order to have some net charge, we need
the number of string endpoints of one orientation to be unequal to the number of string
endpoints of the other orientation. So we need a source for fundamental strings in the
bulk. In our background, such a source is provided by D4-branes wrapped on S* 4.
These necessarily have N, string endpoints, since the background D4-brane flux gives rise
to N, units of charge on the spherical D4-branes, so we need N, units of the opposite
charge (coming from the string endpoints) to satisfy the Gauss law constraint. Thus, we
can get a density of charge on the D8-brane by having a density of D4-branes wrapped on
S4 in the bulk, with N, strings stretching between each D4-brane and the D8-brane.
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In the case where we have Ny > 1 D8-branes, there is another possible picture of the
configurations with baryons [[L6, [[]. To see this, note that a D4-brane / D8-brane system
with four common worldvolume directions is T-dual to a D0-D4 system. In that case, it
is well known that the DO-branes can “dissolve” in the D4-branes, where they show up as
instanton configurations of the spatial non-abelian gauge field. Similarly, our baryon branes
can dissolve in the D8-branes (if we have Ny > 1) and show up as instantons. Indeed, the
Chern-Simons term (B.]) gives rise to a coupling

Ne

between the instanton charge density and the abelian part of the gauge field, showing that
instantons act as a source for the electrostatic potential on the branes.

The question of which of these two pictures is more appropriate is a dynamical one,
but it turns out that the dissolved instantons give rise to a lower energy configuration since
the electrostatic forces prefer the instanton density to be delocalized [[L6], [[7].

3.1 Baryon mass

The baryon mass was estimated originally by Sakai and Sugimoto [[[(] as the energy of a
D4-brane wrapped on S* and located at the tip of the cigar. Since we will also need to
know the potential energy for such branes, we briefly recall the calculation. Starting with
the Born-Infeld action for a D4-brane wrapping S,

S = —u4/d5§e_¢ — det(gap)

and integrating over the sphere, we get
8
Spy = —MBWQRi/dtU(t) (3.2)

as the velocity independent term in the action (the negative of the potential energy). The
minimum energy occurs for U = Uy, and this gives the baryon mass

. 11

0= 577 g

This agrees with the Yang-Mills action for a pointlike instanton configuration on the D8-
brane [[]. Both of these calculations ignore the energy from the electric flux sourced
either by the string endpoints coming from the wrapped D4-brane or by the instanton
density. To take this into account, the authors of [l and [[7q] considered more general
smooth instanton configurations with varying scale factor, inserting these into the Yang-
Mills approximation to the D8-brane action. They found that the optimal size for the
instanton behaves as )\_%, and that the baryon mass is

/
MB:Mg(H—i)
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This method ignores the effects of the non-trivial geometry on the Yang-Mills configuration
and also does not include effects from the o’ corrections to the D8-brane effective action,
which should be important, since for large A, the instanton is small so that derivatives
of the Yang-Mills field strength are large. Thus, as the authors point out, the numerical
coefficient ¢’ should probably not be trusted. On the other hand, an analysis of the effects
of Born-Infeld corrections [[[f] indicates that at least the power of A in the correction to
the mass and in the instanton size should be reliable.

3.2 Critical chemical potential

We have seen that turning on a chemical potential in the gauge theory corresponds to
including boundary conditions Ay = p for the two asymptotic regions of the D8-brane.
For any p, one solution consistent with these boundary conditions is to have constant Ay
everywhere on the brane. This represents the vacuum configuration in the field theory.
However, beyond a certain critical chemical potential, this solution is unstable to the
condensation of baryons.

The critical value of the chemical potential should not be larger than the baryon mass.
At this value, a zero-momentum baryon has effectively negative energy in the modified
hamiltonian, so it is advantageous to add baryons to the vacuum. If there were no inter-
actions between the baryons, the critical chemical potential would be exactly the baryon
mass. Note that even in the absence of interactions, the baryon density above the transition
is limited by the Fermi statistics for the baryons for odd N or in any case by the Fermi
statistics of the quarks. The condensate will have occupied all states whose Fermi energy
is less than the chemical potential. In this case, the baryon density will rise smoothly from
zero above the critical chemical potential and the transition will be second order.

With short range repulsive interactions, the story would be qualitatively similar, with
a slower growth in the baryon density as the chemical potential is increased. In QCD,
however, we have attractive interactions, and this lowers the critical chemical potential
below the baryon mass. With the repulsive interactions, there is a specific nonzero value
of the baryon density for which the energy per baryon is lowest, and when the chemical
potential is increased to this value the baryon density jumps from zero to this density.

In the next sections, we will study this transition to nuclear matter in the Sakai-
Sugimoto model for one flavor (section 4) and two flavors (section 5). In the first case, it
appears that the transition is second order, unlike QCD, while in the multi-flavor case, we
find some evidence for a more realistic first-order transition.

4. One flavor physics

In this section, we study the physics of the Sakai-Sugimoto model at finite chemical poten-
tial in the simpler case of a single quark flavor. Here, we have only a single D8-brane in
the bulk, and we can use the abelian Born-Infeld action for our analysis. Since the abelian
gauge theory does not support large instantons, the wrapped D4-branes cannot dissolve
into the D8-branes, so the baryons are pointlike charges on the D8-brane that source the
electrostatic potential. For chemical potential larger than the baryon mass, it is favorable
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for some of these baryons to condense, and we would now like to determine the baryon
density as a function of chemical potential for u above the critical value.

Once we have some non-zero baryon density, it is important to include the energy
contributions from the electric field on the branes. Starting with the action (R.J), we can
derive the 341 dimensional energy density via a Legendre transformation (or alternatively,
using the Noether method). We find!!

(4.1)

g8 o 3
Efux = g—s§w2Rj /dU

Us
(1= sondr)
We can rewrite this in terms of the electric flux (R.)
5
=82 AU~ 1+ = —1
&n o 37T R} U T + IE

where we have subtracted off the £ = 0 contribution from the brane tension.

4.1 Localized source approximation

As a first approximation, we make the simplifying assumption that all the pointlike in-
stantons sit at U = Uy. More realistically, the charge should spread out dynamically, via
electrostatic repulsion; we will include this effect in section 4.2.

In our simple approximation, the energy from the electric flux (including a factor of 2
to take into account the energy from both halves of the D8-brane) is

5
psS 53 [ ch</ B2 >
Eux = 2 —-1°R;} dU — 1+ —=-1
f 983 4 U() \/? U5

16 , 3 1
— %EHRE Uz h(e)

5
where we have defined e = E/Uy and

h(e) = /1ood:v(\/a:5 + €2 —:lcg)\/llW .

Meanwhile, the energy from the charges in the electrostatic potential and the masses of
the pointlike instantons combine to give a term

gcharge = _(,U - ,Uc)nB .

For p > pe, the combined energy from the string endpoints (or Chern-Simons action)
and the D4-brane mass (or Born-Infeld energy of the instantons) is negative and should
be proportional to np, while the energy from the flux is a positive function of np which

"When performing the Legendre transform, it is important to note that dy A = Fio, so the Legendre
transform is Fyy 8‘;0% — L. This is most clear in Ag = 0 gauge.
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7
behaves as nQB for small ng and njp for large np. Thus, there will be some positive value

of np where the total energy is minimized.
Defining
6ma’
Uy '’
so that i = 1 corresponds to u = Mpg, and using the relation (.6) between ng and E, the

i =

total energy may be written as

s 16 5 8 1 1.
5 == gg'ﬂﬂRZ (]02 <h(€) — g(,u — 1)6> )

From this, we find that the energy is minimized when

-1 =H().

This can be inverted to determine the relationship between np (proportional to e) and u
above the transition. For small y — u., we find

1
~—(p—1
e~ —(p—1)
SO
np X — e small pp — pc -
For large p we have
e~ 0.021/3

SO
5
2

np o< i large p — fic

4.2 Dynamical charge distribution

The analysis of the previous section assumed that all charges were localized at U = Uy.
Presumably, the charges would prefer to spread out dynamically. To take this into account,
we can define a charge distribution pp(U) which we would like to determine. For a given
p, the energy from the string endpoints is

gstring = _Nc/dUA(U)pB(U) :

The energy from the baryon masses is

N
mass — d
s = / Upp(U)U

where we have used (B.9). For a given pp, the electric flux is determined by solving

T Sy O T b
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Finally, as above, the energy from the electric flux is
5 3
S p3
o = M887r2/dU U2R?
s 3 VA= fU)(0rA)?)

The charge distribution for a given chemical potential should be determined by minimizing

(4.3)

gstring + 5ﬂux + gmass

To carry out the minimization, it is simplest to work in terms of

1
2

BE(U) = U <f(1 - (aUA)2> Oy A .

U)
Then . >
VIOt B
and C(2nal)
pe(U) = TW;X@UE
where

] 3
C= @fﬂ'QRj .
gs 3
We then have

R T

, 1 5 E? 1
= — (27 ) phoo Eno + /dU [\/7 <\/U5 +E?2-U2 + E2+U5> + 3U8UE} )

where we have included an extra factor of 2 in the denominator on the left side since we
are integrating over only half the brane on the right side. To maximize this, we can first
minimize over all E(U) such that E(Up) =0, E(U — o0) = Es, and dyE > 0 to determine
E(Es, ). Then we can minimize over Fo..

Varying the energy functional with respect to F, we find that the energy functional is
locally stationary if and only if

3U5E+2E3_ f(U)
(U5 + Ez)% 3
This satisfies E = 0 for U = Uy as desired but approaches arbitrarily large values for large

U. On the other hand, our constraints Oy E > 0 and E(U — o0) — Eo imply that E can
never exceed F,. It is straightforward to check that the local contribution to the energy

(4.4)

from a point U is a function of E that decreases from E = 0 to the optimal value ([.4) and
then increases again, so when the value (.4) exceeds E., the best we can do to minimize
the energy is to set £ = F,. We conclude that the minimum energy configuration for
fixed p and fixed Ey is

3U°E + 2E3 U
(U5 +E2)5 3
E = Eoo U Z Umax (45)
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Here Upax represents the extent of the charge distribution, and is related to F, as

8Uax Boc + 2E3 _ \/f(Unax)

(4.6)
(Ubax + E2)2 3

We can now write the energy as a function of F,, or more conveniently, U, as follows.

We define a function g(z) by
3259 + 2¢° B f@)

(@ +g2): 3
where 1
f($) =1- ﬁ )
and define
H(z,g) = ——— ( x5+g2—x%+792 )
7 f(z) Vs +g2/)

Then in terms of u = Upax/Up and , the energy is given by

£ = 200§ { [ datiagt@) + [ HGg) - 5 [ ote)dn+ Jug) - ingw}

where as in the previous section, we define

(6ma’)p
Uy

[’/ p—
We can now minimize this as a function of u. The result is
oo
fi=u-+ 3/ dz0gH (z, g(u))
u

To compare with the results of the previous section, we note that (using ([£.6)) the dimen-
sionless variable e proportional to the baryon mass is related to u by

3u’e + 2¢3 \/ f(u)

(ud + €2)2 3

From these, we find that for small v — 1,

N|=

p—1=c(u—1) c1 ~ 1.814 small u — 1

or
e~ 0.106(ji — 1)

where we have used ([.)). Thus, as before,

ng o (u— pe)
for small p — p., where the critical value of u is as before. For large u, we find

L — cou co ~ 1.672 large u
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or
e~ 0.031172 .

Again, we find that

5
np o W12 .

Thus, the qualitative behavior of np(u) is the same as in the simplified model of the
previous section, though the numerical coefficients come out different. We also found the
behavior of the energy density:

& x (M_M6)4

for (u — pe) small, and
E x M7/2

when p is large.

It is interesting that (in this approximation) the charge distribution has a sharp edge
at U = Upax which progresses further and further towards the UV in the radial directions
as the chemical potential is increased. In the field theory picture, the radial direction
represents an energy scale, so the charge distribution we find in the bulk should be related
to the spectrum of energies for the condensed baryons. The edge of the distribution is then
a bulk manifestation of the Fermi surface.

Since our large N, calculation does not distinguish between even and odd values of
N, it is insensitive to whether or not the baryons are fermions or bosons. Thus, the
Fermi surface that we see should probably be thought of as the quark Fermi surface. It
is interesting that the fermionic nature of the quarks in the field theory arises in the bulk
from the classical electrostatic repulsion between the instantons.

5. Two massless flavors

For Ny = 2, the authors of [Ld, [ argued that single instantons on the D-brane pre-
fer to grow to some finite size on the baryon in order to balance the electrostatic forces
which tend to make the instanton spread out with the gravitational forces which prefer
the instanton to be localized as much as possible near the IR tip of the D8-branes. From
these considerations, we also expect that the minimum energy configurations with nonzero
baryon density will involve some smooth configuration of the nonabelian gauge field on the
D8-brane locally carrying an instanton density Tr(F A F'). In this section, we consider such
configurations.

The absence of homogeneous configurations. We first consider static, spatially ho-
mogeneous configurations, such that A, is translation invariant in the 3+1 directions of the
field theory and rotationally invariant (up to a gauge transformation) in the three spatial
directions (which we denote by an index 7). The general configuration of the spatial gauge
field with these symmetries is

Ao =0 Ai = 7O’ih(0’) (5.1)
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for an arbitrary function h(c). These give!?

~ 1 9 - 1
Fz‘j = —mﬁijka'kh (O’) Fiy = _iaih/(a) . (52)
From these, we find that
~ o~ 3 9 1~ -~ 3 A
FicFig = Z(h/((f)) Tax2 in'sz‘j = Wh (o) laxs -

We see that unless both h and A’ vanish for ¢ — Zoo, the Yang-Mills action density
integrated over o will diverge, corresponding to an infinite energy density in the field
theory. On the other hand, we find
n n 1 2 I
(F/\F)lggg: h (U)h (U)

8ma’

1
247

Dy (h3(0))Naxs .

In order that we have a configuration with finite baryon density in the field theory, we
require that this instanton density, integrated over the sigma direction be non-zero.'3 But
this requires that h(oco) # h(—00), and we have already seen that such a configuration will
result in an infinite energy density in the field theory.

The apparent conclusion for the dual field theory is that there are no spatially homo-
geneous configurations with finite non-zero baryon density and finite energy density. Now,
there certainly are non-homogeneous configurations with finite average energy density and
finite average baryon density: we can simply take a periodic array of individual instantons.
For large enough chemical potential (greater than the energy density divided by the baryon
density), such configurations are favored over the vacuum, so we will certainly have a phase
transition to a phase with nonzero baryon density as the chemical potential is increased.
However, our observation suggest that this phase cannot be spatially homogeneous.

Interpretation of the inhomogeneity and origin of the chiral density wave. The
inhomogeneity of nuclear matter is not unexpected, and indeed is what we have for real
nuclear matter at low densities (e.g. in the interior of large nuclei). It simply reflects
the fact that the individual nucleons retain their identities (and therefore that the baryon
density is clumped!#). What is perhaps surprising is that the inhomogeneity seems to have
a topological rather than a dynamical origin from the bulk point of view, following from
basic properties of instantons. It follows that even at arbitrarily high densities, the nuclear
matter will be inhomogeneous, though the scale of the inhomogeneities should become
shorter and shorter as the instantons pack closer and closer together. This suggests an
interpretation of the DGR “chiral density wave” instability of the quark Fermi surface [[L§
at asymptotically large chemical potential: that even at arbitrarily high densities, quarks
in large N, QCD bind into distinct nucleons, in contrast to the quark matter phase with

12\We use conventions where {0, 0;} = 26;;1 and recall that F = (2ra’)F.

13To see this, note that the abelian electrostatic potential Ao couples to Tr(F A F), so that the change
in the action upon a constant shift in Ao (corresponding to a change in the baryon chemical potential) is
JdoTr(F A F).

14 Quantum mechanically this would be reflected in the behavior of density-density correlation functions.
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homogeneous condensates that we expect at large p for finite N.. This may be related to
the property that the density of a baryon diverges for large N, and thus the baryon is more
and more sharply defined in this limit.

Our approximation. The absence of homogeneous configurations with finite baryon
density complicates the analysis of the phase transition and the properties of the nuclear
matter phase. We will not attempt to study the inhomogeneous configurations directly here.
Rather, we will describe an approach that approximates the inhomogeneous configurations
with singular homogeneous configurations.

Our approach is motivated by the observation that in the limit of infinite baryon den-
sity, the bulk configuration should become homogeneous. Such homogeneous configurations
are singular at the core, corresponding to a divergence of the instanton charge density. For
example, we can have a self-dual configuration of the form (f.1]) if we choose

h(o) = (5.3)

1
=
This should arise from the limit of a periodic array of instantons for which the separation
is taken to zero while adjusting the scale factors to yield a non-trivial configuration in the
limit. We expect that some similar configuration'® should arise in our case as the minimum
energy configuration in the limit of infinite chemical potential.

As we move away from infinite density, the minimum energy configuration will only
be approximately homogeneous. We expect, however, that the averaged field strengths
and instanton density should be qualitatively similar to those for the configuration (p.3)
but with finite values at ¢ = 0. This behavior can be achieved in a configuration of
the form (b.1)) for which h is an odd function like (5.J) but with some finite limit at
o = 0. Such configurations are singular at ¢ = 0, but we will ignore any effects associated
with the singularity at ¢ = 0 since we are using our configurations to approximate non-
singular inhomogeneous configurations that do not have any pathologies at ¢ = 0.'6 In
particular, we might expect that our approximation becomes exact in the limit of infinite
baryon density where we can have homogeneous configurations. We will find evidence
below that supports the validity of this claim. More generally, we find results that are in
accord with various physical expectations, providing further evidence for usefulness of our
approximation.

5.1 Energy density for approximate configurations

We would now like to analyze the behavior of the model as a function of chemical potential
in the approximation where we consider only configurations of the form (p.1]), taking A to
be a monotonically increasing function for o > 0 that takes some finite (negative) value
at 0 = 0 and vanishes for ¢ — oo. In practice, we work with the action for half the
brane, assuming that h is an odd function so that all the field strengths are symmetric

510t necessarily self-dual since we are working with the D-brane effective action in a nontrivial geometry
16This is similar in spirit to replacing a nonsingular charge distribution with a localized singular distri-
bution with the same multipole moments.
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about 0 = 0. As we mentioned above, such configurations are singular at y = 0 but we
ignore any effects of the singularity, motivated by the expectation that the nonsingular
contributions may provide a good approximation to the averaged quantities for the non-
singular inhomogeneous configuration that we should really be studying.

The configuration of the spatial SU(2) Yang-Mills field carries instanton density, and
therefore acts as a source for the abelian electrostatic potential on the D8-branes. In order
to determine the potential A(U) for a given h(U), we need the equation of motion for A,
which should come from the non-abelian generalization of the Born-Infeld action (R.2) and
the Chern-Simons action (B.])).

As we have noted, the nonabelian generalization of the Born-Infeld action (B.3) is
known only up to F% terms. In the absence of the full result, we will work with a naive
ordering prescription in which we simply insert our ansatz into the abelian expression (P.2)
and (noting that each product of F's above gives an identity matrix) evaluate the trace.
This will give us results that are precisely correct in the limit where the field strengths
are small and only the Yang-Mills terms in the action are important, but we should not
trust numerical coefficients whose calculation depends on the higher order terms in the
Born-Infeld action.

Inserting the ansatz (5.9) into (R.2), we find (in the ¢ = U coordinates):

Soer =~ a2 d‘*deW (7 - @ + 0 @/may + 5

} @) 4 (2ma’)?
(5.4)
while the Chern-Simons term (B.1) gives:
N,
S = Y Tr(ANFAF)
_ N 19, (13
If we define )
G=——+-(0U))?
O
and

_ h*(U)
F—U\/(U/Rzl)g‘i’w

then the action takes the form

S = —C/dUF\/G— (O A)? +/%/216U(h3)

where
he N
~12876(a/)4
and 16
U
C = 371'2@]%2
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The equations of motion for the electrostatic potential A are
COyE = kdy(h?)

where -

FoyA

E=——292
G — (9 A)2

(5.6)

From this, we conclude that
kh® = C(E — Es) (5.7)

where we have determined the integration constant by demanding that A vanish as U — oo,
as is required for finite energy configurations. Since E vanishes by symmetry at U = Uy
(assuming that there is no delta function charge distribution at U = Uj) we see that the
asymptotic value of E is related directly to the value of h at U = Uy by

khd = —CE4 . (5.8)

We may therefore rewrite (5.7) as

Using this result, the electrostatic potential may be determined in terms of h by invert-

ing (5.6).

We may now write an expression for the energy density of a configuration for a given
value of h(U).

Starting with the actions (f.4) and (f.5), we can derive the 3+1 dimensional energy
density via a Legendre transformation as we did in section 4. We find

£= C/dU — — Fj—0V/Guo| — k/AaU(h?’)
aUA)

where we have subtracted off the energy density of the unexcited brane such that the
vacuum state is normalized to zero energy. We can now rewrite the energy in terms of h,
assuming that the equation of motion for A is obeyed. We have first

E=C /dU\/G(F2 2 EVG A
= + F ) F()\/i-i- %EQ — CAFE

Now writing E in terms of h as above, changing variables to @ = U /Uy, defining

RER

= 5.9
V= (5.9)
N — 2gsNels
0— 3\/§R 9
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and N
fi=vV3Ru="2_H (5.10)

we finally have

7
£ = CU;)Q /Oo dax \/~1 4y (2))? a® + AQ(ZEQy"‘ +2(y° — y3)? ) x? .
R: |N f(@) vVt + A (22t + (13 — )2 \/f
(5.11)
Using the definition (b.9), and the relations (.§) and (R.6), we find that yq is related to
the baryon density by

44 S
np = — —
B 12[ 97 R
3 3 -

Thus, minimizing this expression for i = 0 and fixed yy will give the minimum energy
density for a fixed baryon density, which we denote by

Emin (yO)

The energy density per baryon is then proportional to Emin/ yg, and as we have argued
above, the minimum of this gives the critical chemical potential. In the next section, we
will analyze the functional (p.11]), to obtain results for the behavior of Enin(yo) and for the
critical chemical potential.

5.2 Results

In this section, we discuss the evaluation of the baryon density for a given chemical poten-
tial based on minimizing the energy functional (p.11]). Demanding that the functional is
stationary under local variations of y gives a second order differential equation for y. For a
given initial value yo we find that there is a particular value of the initial slope g, for which
the solution approaches 0 as & — oo. For larger or smaller y, the solution approaches posi-
tive or negative infinity respectively for x — oo, giving a diverging energy functional, so the
minimum energy configuration must correspond to the solution with boundary condition
y— 0at x— o0.

5.2.1 Small baryon density

We first study £(yo) in the regime where the baryon density is small. Since the full energy
at finite y takes the form

E(Yo, 1) = Emin(y0) — Y »
it is important to determine the behavior of Epin(yo) for small yy. As long as the potential
for p = 0 is quadratic (or linear) for small yo, we must have a first order transition

to some finite baryon density at a critical chemical potential rather than a continuous
transition where the baryon density increases gradually from zero. The results we obtain
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at small yo are also very robust (within our approximation), since here all field strengths
and derivatives are small, and the incompletely known o’ corrections in the D8-brane
effective action are not important.

The terms in (§.11)) coming from the Yang-Mills action are simply the leading order
kinetic and potential terms,

_ CU% & 1 s [z , 1 1 4\ -
&= R§0 {/1 d95<237 f(@)(y (37))2+2)‘(2)My> Nyg}

It is convenient to change variables to obtain a canonical kinetic term. Thus, we define u
such that

du 1 1

41w VP

Choosing u = 0 to correspond to z = 1, we have

Note that = oo corresponds to u = /3, so we now have a finite domain, which is
convenient for our later numerical methods. Dropping the overall constant and working at
i = 0 for now, we have

. 571 1
§= /3 du<(y’)2 + A3x2(u)y4) (5.12)
0 2 2
Extremizing, this gives rise to the differential equation
/() = 232 (u)y’ (u) (5.13)

As we discussed above, for a given y(0) > 0, solutions to this equation with slope larger
or smaller than some critical value will approach positive or negative infinity as u — /3
and give rise to an infinite energy. The minimal energy configuration corresponds to the
critical value of the initial slope for which the solution approaches zero at u = 7/3. For
Yo < 1/, the solution is linear to a good approximation, since taking

3
y() = w0 (1 - ﬂu> (5.14)
we find that the right hand side of (f.13J) is small enough that even the maximum value of
y” integrated over the interval would only change 3/ slightly.
Thus, for yp < 1/), the energy is given by inserting (5.14) into (f.19), and we find

5 3
Eett (Yo) ~ gy(% + 0(/\23/3) small g

Thus, the full energy £ (yo, i) is always positive for small enough yo, and the transition to
nuclear matter must be first order in our model.
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While we can no longer trust the Yang-Mills approximation for large yo (of order
1/ VA or larger), it still interesting to look at behavior of the Yang-Mills terms in the
energy functional in this regime. Continuing to use only the terms (p.19), a numerical
study suggests the asymptotic behavior

~ 1
Eeff = gAOyS

Note that this asymptotic growth in the energy density as a function of yg is not enough
to stabilize the baryon density to finite values for ji larger than value

1
L= =M\ .
H 30

Comparing with (5.1(), we see that this value corresponds precisely to u = Mg. Thus,
we conclude that the o/ corrections in the Born-Infeld action are essential for stabilizing
the baryon density to finite values for large p, and that without these, the baryon density
would diverge beyond a critical chemical potential that exactly coincides with the large A
result for the baryon mass. In fact, we will see that at large A the Born-Infeld corrections
only modify this critical chemical potential by terms of order %

5.2.2 The critical chemical potential

Now that we have demonstrated that there must be a first order phase transition to nuclear
matter in our model, we would like to determine the critical value of y above which a non-
zero baryon density is favored, and the baryon density as a function of u above this. Thus,
we repeat our numerical study from the previous section, but this time with the full energy
functional. In this case, the differential equation for y (using the same coordinates) is

5 dl' dx y/ 2
"= g W) () +2%)0y I H <1 + (xg O In(H)
where 4
Hoy) 1+ 22(% + 25 (17 — 42)?)

VI+2(5 + 500 - 1?)
As before, the energy is minimized for a critical solution to this equation that approaches
0 at u=m/3.

Our results indicate that the energy Emin(yo) behaves as a quartic function of yg for
large 1o, so the Born-Infeld terms stabilize the baryon density to finite values for any value
of p. As we have discussed, the critical value of the chemical potential beyond which a
nuclear matter phase is favored is given by the minimum value of the energy per baryon.
Specifically, we have

~

_ . &
fle = ming, —;
c Yo yg,
We have numerically evaluated this critical chemical potential for large values of A ranging

from A = 10 to A = 3000. Our data for p. at large A are fit very well with a function

_3
frerie = MG(A+ gt + 0 %)) (5.15)
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where the best fit values are
A =~ 0.9999 c~12

Thus, to very good accuracy, the critical value of the chemical potential approaches the
baryon mass for large A. Though our analysis using singular homogeneous configurations
is an approximation, it is implausible that the almost exact agreement between the critical
chemical potential and the baryon mass that we find here for large A is a numerical coinci-
dence. A more plausible explanation is that the ratio of the critical chemical potential to
the baryon mass does approach 1 in the limit of large lambda, and that our approximation
gets this leading result correct. This is in accord with the expectation that our approxima-
tion should become exact in the limit of large baryon density, since as we will see below,
the baryon density just above the transition does approach infinity as A becomes large.

Thus, we believe that a robust conclusion of our analysis is that the binding energy
per nucleon for large A is a vanishing fraction of the baryon mass.

5.2.3 The binding energy per nucleon

To determine the actual value of the binding energy, we need to compare the subleading
term in (b.15) with the subleading term in the baryon mass.

Even if our approximation is also correct for this subleading term, evaluating the coef-
ficient ¢ here depends crucially on the higher order terms in the Born-Infeld action. Since
we have used the abelian D8-brane action together with an ad-hoc ordering prescription in
lieu of the unknown full result for the effective action, we expect that the numerical value
here is not reliable, However, the result that the correction is of order A= (rather than
e.g. )\7%) should be robust.

Similarly, a correct calculation of ¢ in the result

MB:Mg<1+CI+...>
Ao
for the baryon mass discussed in section 3.1 probably requires more complete knowledge
of the non-abelian effective action. However, recalling that the leading order result for the
baryon mass is proportional to A, we see that the result for the binding energy per nucleon
(Mp — p.) is actually relatively insensitive to A for large A. Since we also know that this
binding energy approaches some constant value in the limit of small A (the large N. QCD
result with two massless flavors), then assuming a smooth behavior at intermediate values
of A, we can treat the large A result as a prediction for the order of magnitude of the QCD
result.!”

Noting that Mgk ~ Aqcp for large A, the value of the binding energy per nucleon
extrapolated to N. = 3 becomes

1
Eping = 9?AQCD<C/ —¢)~T7MeV(c —c)

17 Another example with similar insensitivity to A for both large and small X is the free energy of N = 4
SUSY Yang-Mills theory. Here, it is indeed the case that the large A result for the free energy gives a good
prediction of the order of magnitude of the the small lambda result (or vice versa).
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As we have noted in the introduction, this is indeed of the same order of magnitude as the
physical QCD result of 16MeV assuming that ¢ — ¢ is of order one.

5.3 Baryon density above the transition

We can also calculate the baryon density just above the transition. Our results suggest
that just above the transition, the preferred value of yq for large A behaves like

yo — KA 73

for K ~ 0.31. This suggests that
npR> x )\%
as A is increased. This is consistent with the finding of Sakai and Sugimoto that the baryon
size goes like A3
For large chemical potential, the result that the u = 0 energy density approaches yé
1

for large yo implies that the baryon density minimizing €(yo < n}) — unp for large u is
np o< u’

Also, the energy density as a function of u for large p behaves as
& x pt

Note that the powers here are those appropriate for free fermions. We would like to
understand this point better.
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A. Holographic dictionary

Consider a configuration (before decoupling) with a D4-brane in the 01234 directions (with
x4 noncompact) and a D8-brane in the 012356789 directions, but bent in a U shape so as
to intersect the D4-brane at two places along x4. Locally, one of these intersections is a
D8 and the other is a D8. Now, we are interested in the coupling between the D8-brane
gauge field and the operators

Bp = ¢21/JL

at the one intersection and
Br ={hvr
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at the other intersection. We define wz and w;z such that they create particles with positive
charge on the D4-brane, or physically, such that a test charge on the D4-brane is repelled
from both of these particles. In this case, the baryon number operator is

B = 1/N.(¢} v, + i)

and we have a coupling agB in the effective action where ag is the time component of the
D4-brane gauge field.

We would now like to understand how the two operators By, and Bpr couple to the
D8 brane gauge field. To do this, we note that if we perform a rotation by 7 in the 1-4
directions, centered at the point on the D4-brane between the two D8-branes, we get back
to precisely the same configuration, since the D4-brane does not change orientation, while
the D8 and D8 branes will switch orientation but also switch position.

Now, suppose we have a configuration with one QZ)E particle at the D8 intersection. This
repels a test charge on the D4-brane, so after the rotation it is still a particle that repels a
test charge, but now it is a particle at the D8-bar intersection. It must therefore be a w%
particle. Thus, a ¢z particle is mapped to w% particle. Now, suppose that we have a test
charge on the D8-brane that is repelled by the particle in the initial configuration. In the
rotated configuration, this test charge will still be repelled (by the 1/1}; particle). Also, the
test charge in the new configuration will have the same sign as in the old configuration, since
we have simply performed a rotation. This means that if we describe the entire U-shaped
D8-brane using a single patch, both wz and w; particle will source electric fields pointing
away from the D4-brane (or both towards the D4-brane, depending on our convention).

This implies further that if we use a single field Ag over the entire D8-brane config-
uration, then the coupling of Ay to Bp at the D8 intersection will have the same sign as
the coupling of Ay to Br at the D8-bar intersection. For the Sakai-Sugimoto setup, this
implies that if we want to turn on a chemical potential for baryon number (i.e. turn on the
operator B), we want to choose Aj to have the same sign at 0 = 0o as at o0 = —oo (if we
use the same gauge field over the whole brane configuration).
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